Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Cancer Sci ; 112(1): 194-204, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33070465

RESUMEN

Chronic myeloid leukemia is driven by the BCR-ABL oncoprotein, a constitutively active protein tyrosine kinase. Although tyrosine kinase inhibitors (TKIs) have greatly improved the prognosis of CML patients, the emergence of TKI resistance is an important clinical problem, which deserves additional treatment options based on unique biological properties to CML cells. In this study, we show that metabolic homeostasis is critical for survival of CML cells, especially when the disease is in advanced stages. The BCR-ABL protein activates AMP-activated protein kinase (AMPK) for ATP production and the mTOR pathway to suppress autophagy. BCR-ABL is detected in the nuclei of advanced-stage CML cells, in which ATP is sufficiently supplied by enhanced glucose metabolism. AMP-activated protein kinase is further activated under energy-deprived conditions and triggers autophagy through ULK1 phosphorylation and mTOR inhibition. In addition, AMPK phosphorylates 14-3-3 and Beclin 1 to facilitate cytoplasmic translocation of nuclear BCR-ABL in a BCR-ABL/14-3-3τ/Beclin1/XPO1 complex. Cytoplasmic BCR-ABL protein undergoes autophagic degradation when intracellular ATP is exhausted by disruption of the energy balance or forced autophagy flux with AMP mimetics, mTOR inhibitors, or arsenic trioxide, leading to apoptotic cell death. This pathway represents a novel therapeutic vulnerability that could be useful for treating TKI-resistant CML.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Citoplasma/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
3.
Rinsho Ketsueki ; 61(7): 832-841, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-32759572

RESUMEN

Multiple myeloma (MM) is among the most intractable of malignancies and is characterized by uncontrolled growth of malignant plasma cells in the bone marrow (BM). Elucidation of the mechanisms underlying cell adhesion-mediated drug resistance (CAM-DR) may prolong remission and ultimately improve the survival of MM patients. Toward this goal, we identified trimethylation of histone H3 at lysine-27 (H3K27me3) as a critical histone modification associated with CAM-DR. Cell adhesion counteracted drug-induced hypermethylation of H3K27 via inhibiting phosphorylation of enhancer of zeste homolog 2 (EZH2), and promoted sustained expression of anti-apoptotic genes. In addition, we found that CD180, a non-canonical lipopolysaccharide (LPS) receptor, was markedly up-regulated in response to adherence and/or hypoxic conditions. Bacterial LPS enhanced the growth of MM cells both in vitro and in vivo, correlating with expression of CD180. Promoter analyses identified Ikaros (IKZF1) as a pivotal transcriptional activator of the CD180 gene; expression of CD180 was activated via cell adhesion- and/or hypoxia-mediated increases in IKZF1 expression. Administration of lenalidomide prevented the LPS-triggered activation of MM cells by targeting CD180. Taken together, our results suggest that lenalidomide-mediated prevention of LPS-triggered disease progression may be an effective means for prolonging survival in patients with MM.


Asunto(s)
Mieloma Múltiple , Antígenos CD , Médula Ósea , Histonas , Humanos , Lenalidomida , Receptores Toll-Like , Microambiente Tumoral
4.
Biochem Biophys Res Commun ; 518(1): 134-140, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31409482

RESUMEN

The potential application of human induced pluripotent stem cells (hiPSCs) brings great expectations to regenerative medicine. However, several safety concerns, such as oncogenic transformation, remain. A number of methods have been developed to produce hiPSCs with potentially reduced risks. Cell-penetrating peptides (CPPs) are expected to improve the efficiency of nonviral reprogramming by delivering biologically active molecules into cells. Here, we show that the transfection of CPPs alone into normal adult human fibroblasts generated embryonic body (EB)-like cell clusters in the absence of reprogramming factors. The CPP-generated cell clusters were positive for a set of multipotency markers and differentiated into endodermal, ectodermal, and mesodermal cells in vitro. These results suggest that CPPs converted normal human adult somatic cells into multipotent cells. Moreover, we show that CPPs dissociated histone deacetylase 1 and lysine-specific demethylase 1 from the promoter/enhancer regions of reprogramming factors to reactivate their expression. This is the first report of an easy and quick method for somatic cell reprogramming by CPPs and a novel mechanism of reprogramming. The potential application of CPP-generated multipotent cells resolves several concerns, especially safety issues, in regenerative medicine.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Fibroblastos/citología , Células Madre Multipotentes/citología , Secuencia de Aminoácidos , Animales , Agregación Celular/efectos de los fármacos , Línea Celular , Péptidos de Penetración Celular/química , Cuerpos Embrioides/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Proteínas Mutantes/farmacología
5.
Rinsho Ketsueki ; 59(8): 1048-1057, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30185705

RESUMEN

Multiple myeloma (MM) cells acquire dormancy and drug resistance via their interaction with bone marrow stroma cells (BMSCs) in a hypoxic microenvironment. In this study, we found a positive expression of CD180/MD-1 complex (a non-canonical toll-like receptor) on MM cells, which was markedly up-regulated under adherent and/or hypoxic conditions. Bacterial lipopolysaccharide (LPS) enhanced the growth of MM cells via the activation of MAP kinases, an effect which showed a positive correlation with the expression levels of CD180. LPS administration significantly increased CD180/CD138 double-positive cell number in a murine xenograft model after the inoculation of MM cells directly attached to BMSCs. Notably, the shRNA-mediated knockdown of CD180 terminated the LPS response in vitro and in vivo. Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the CD180 gene, whose transcription was activated via cell adhesion and hypoxia by increasing Ikaros expression and its binding to the promoter region. Pharmacological targeting of Ikaros with lenalidomide ameliorated the response of MM cells to LPS in a CD180-dependent manner in vitro and in vivo. CD180/MD-1 pathway may represent a novel mechanism for the regulation of the growth of MM cells in BM milieu and may serve as a therapeutic target to prevent the regrowth of dormant MM cells.


Asunto(s)
Inmunidad Innata , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Animales , Antígenos CD/genética , Antígenos de Superficie/genética , Adhesión Celular , Humanos , Células Madre Mesenquimatosas/citología , Ratones
6.
Blood ; 125(24): 3731-46, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25904247

RESUMEN

Recent investigations indicate that epigenetic regulators act at the initial step of myeloid leukemogenesis by forming preleukemic hematopoietic stem cells (HSCs), which possess the increased self-renewal potential but retain multidifferentiation ability, and synergize with genetic abnormalities in later stages to develop full-blown acute myeloid leukemias. However, it is still unknown whether this theory is applicable to other malignancies. In this study, we demonstrate that lysine-specific demethylase 1 (LSD1) overexpression is a founder abnormality for the development of T-cell lymphoblastic leukemia/lymphoma (T-LBL) using LSD1 transgenic mice. LSD1 expression is tightly regulated via alternative splicing and transcriptional repression in HSCs and is altered in most leukemias, especially T-LBL. Overexpression of the shortest isoform of LSD1, which is specifically repressed in quiescent HSCs and demethylates histone H3K9 more efficiently than other isoforms, increases self-renewal potential via upregulation of the HoxA family but retains multidifferentiation ability with a skewed differentiation to T-cell lineages at transcriptome levels in HSCs. Transgenic mice overexpressing LSD1 in HSCs did not show obvious abnormalities but developed T-LBL at very high frequency after γ-irradiation. LSD1 overexpression appears to be the first hit in T-cell leukemogenesis and provides an insight into novel strategies for early diagnosis and effective treatment of the disease.


Asunto(s)
Transformación Celular Neoplásica/genética , Células Madre Hematopoyéticas/patología , Histona Demetilasas/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T/patología , Regulación hacia Arriba , Animales , Línea Celular , Proliferación Celular , Transformación Celular Neoplásica/patología , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Isoformas de Proteínas/genética , Linfocitos T/metabolismo
8.
Rinsho Ketsueki ; 57(5): 546-55, 2016 05.
Artículo en Japonés | MEDLINE | ID: mdl-27263778

RESUMEN

Elucidation of the epigenetic mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified trimethylation of histone H3 at lysine-27 (H3K27me3) as a critical histone modification for cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance in multiple myeloma. Cell adhesion counteracted drug-induced hypermethylation of H3K27 via inactivating phosphorylation of EZH2, leading to sustained expression of anti-apoptotic genes including IGF1, BCL2 and HIF1A. Inhibition of the IGF-1R/PI3K/Akt pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. To our knowledge, this is the first demonstration of an epigenetic mechanism underlying CAM-DR and provides a rationale for the inclusion of kinase inhibitors counteracting EZH2 phosphorylation in combination chemotherapy aimed at increasing the therapeutic index.


Asunto(s)
Adhesión Celular , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Animales , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Fosforilación , Transducción de Señal
10.
Int J Clin Oncol ; 20(3): 413-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953678

RESUMEN

Multiple myeloma (MM), one of the most intractable malignancies, is characterized by the infiltration and growth of plasma cells, the most differentiated cells in the B-cell lineage, in the bone marrow. Despite the introduction of novel therapeutic agents, including proteasome inhibitors and immunomodulatory drugs, the prognosis of patients with MM is still worse than that of most hematological malignancies. A better understanding of the molecular pathogenesis of the disease is essential to achieve any improvement of treatment outcome of MM patients. All MM cases pass through the phase of asymptomatic expansion of clonal plasma cells, referred to as monoclonal gammopathy of undetermined significance (MGUS). It has long been believed that MM evolves linearly from MGUS to terminal phases, such as extramedullary tumors and plasma cell leukemia via the accumulation of novel mutations. However, recent studies using next-generation sequencing have disclosed the complex genomic architecture of the disease. At each step of progression, the acquisition of novel mutations is accompanied by subclonal evolution from reservoir clones with branching patterns. Each subclone may carry novel mutations and distinct phenotypes, including drug sensitivity. In addition, minor clones already exist at the MGUS stage, which could expand later in the clinical course, resulting in relapse and/or leukemic conversion. The ultimate goal of treatment is to eradicate all clones, including subclonal populations with distinct biological characteristics. This goal could be achieved by further improving treatment strategies that reflect the genomic landscape of the disease.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada/fisiopatología , Mieloma Múltiple/fisiopatología , Células Plasmáticas/patología , Progresión de la Enfermedad , Humanos , Mieloma Múltiple/etiología , Mieloma Múltiple/genética , Pronóstico
11.
Nihon Rinsho ; 73(1): 57-61, 2015 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-25626305

RESUMEN

Interaction of myeloma cells with bone marrow microenvironment underlies cell adhesion-mediated-drug resistance (CAM-DR). CAM-DR is exerted via not only direct adhesion to stromal cells, fibroblasts, mesenchymal stem cells, or macrophages but also indirect effects of IL-6, IGF-1, and SDF-1 in myeloma cells. Bortezomib overcomes CAM-DR via down-regulation of VLA-4, which is a key adhesion molecule in CAM-DR. Although bortezomib is indispensable for myeloma treatment, it is unclear which is the best drug to be combined. Using isobologram analysis, we show that not cyclophosphamide, adriamycin, and lenalidomide but melphalan exerts additive cytotoxicity under all culture conditions tested (stroma free and in contact with fibronectin or stromal cells). Melphalan is considered the best drug to be combined with bortezomib to overcome CAM-DR.


Asunto(s)
Resistencia a Antineoplásicos , Mieloma Múltiple/inmunología , Células del Estroma/efectos de los fármacos , Antineoplásicos/uso terapéutico , Ácidos Borónicos/uso terapéutico , Bortezomib , Humanos , Mieloma Múltiple/tratamiento farmacológico , Pirazinas/uso terapéutico , Células del Estroma/inmunología , Microambiente Tumoral
12.
J Biol Chem ; 288(35): 25593-25602, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23878197

RESUMEN

Bortezomib therapy is now indispensable for multiple myeloma, but is associated with patient inconvenience due to intravenous injection and emerging drug resistance. The development of orally active proteasome inhibitors with distinct mechanisms of action is therefore eagerly awaited. Previously, we identified homopiperazine derivatives as a novel class of proteasome inhibitors with a different mode of proteasome binding from bortezomib. In this study, we show that K-7174, one of proteasome inhibitory homopiperazine derivatives, exhibits a therapeutic effect, which is stronger when administered orally than intravenously, without obvious side effects in a murine myeloma model. Moreover, K-7174 kills bortezomib-resistant myeloma cells carrying a ß5-subunit mutation in vivo and primary cells from a patient resistant to bortezomib. K-7174 induces transcriptional repression of class I histone deacetylases (HDAC1, -2, and -3) via caspase-8-dependent degradation of Sp1, the most potent transactivator of class I HDAC genes. HDAC1 overexpression ameliorates the cytotoxic effect of K-7174 and abrogates histone hyperacetylation without affecting the accumulation of ubiquitinated proteins in K-7174-treated myeloma cells. Conversely, HDAC inhibitors enhance the activity of K-7174 with an increase in histone acetylation. These results suggest that class I HDACs are critical targets of K-7174-induced cytotoxicity. It is highly anticipated that K-7174 increases the tolerability and convenience of patients by oral administration and has the clinical utility in overcoming bortezomib resistance as a single agent or in combination with HDAC inhibitors.


Asunto(s)
Anisoles/farmacología , Azepinas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/biosíntesis , Mieloma Múltiple/tratamiento farmacológico , Administración Oral , Animales , Antineoplásicos/farmacología , Ácidos Borónicos/farmacología , Bortezomib , Línea Celular Tumoral , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/enzimología , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Pirazinas/farmacología
13.
EMBO Rep ; 13(2): 142-9, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22222205

RESUMEN

Relatively little is known about the regulatory mechanisms of the Drosha/DGCR8 complex, which processes miRNAs at the initial step of biogenesis. We found that histone deacetylase 1 (HDAC1) increases the expression levels of mature miRNAs despite repressing the transcription of host genes. HDAC1 is an integral component of the Drosha/DGCR8 complex and enhances miRNA processing by increasing the affinity of DGCR8 to primary miRNA transcripts via deacetylation of critical lysine residues in the RNA-binding domains of DGCR8. This finding suggests that HDACs have two arms for gene silencing: transcriptional repression by promoter histone deacetylation and post-transcriptional inhibition by increasing miRNA abundance.


Asunto(s)
Histona Desacetilasa 1/metabolismo , MicroARNs/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , Acetilación , Células HEK293 , Humanos , Células K562 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN
14.
Nihon Rinsho ; 72(6): 1136-42, 2014 Jun.
Artículo en Japonés | MEDLINE | ID: mdl-25016817

RESUMEN

Epigenetics is a cell intrinsic mechanism to maintain genomic integrity by modifying chromatin architecture independently of changes in heritable DNA sequences namely genetic code. Chromatin is composed of nucleosome cores, in which DNA(147bp) is wrapped around a core histone octamer(two each of histones H2A, H2B, H3 and H4), arranged in a "beads-on-a-string array" with linker histones and non-histone nuclear proteins. The chromatin structure could be altered by chemical modifications of DNA and histones, including methylation and acetylation, without affecting genetic codes. In mammals, DNA methylation is mediated via DNA methyltransferases (Dnmt) at CpG dinucleotides. Histones are modified by numerous enzymes, such as histone acetyltransferases (HATs), deacetylases (HDACs), methyltransferases and demethylases, in spatio-temporarily distinct manners. These modifications could alter chromatin structures to regulate a wide variety of biological processes such as gene expression, cell cycle progression and DNA repair. Given the biological importance of epigenetic modifications, it is easy to speculate that the abnormalities of chromatin modifying enzymes and reader proteins underlie several human diseases such as cancer, inflammation and metabolic disorders. Because epigenetic states are reversible and could be modified in response to extrinsic signals, including small molecular compounds, an increased understanding of their molecular framework would allow us to treat pathological conditions caused by epigenetic alterations. Indeed, Dnmt inhibitors and HDAC inhibitors have already applied to the treatment of hematological malignancies with considerable success.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Terapia Molecular Dirigida , Metilación de ADN , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Leucemia/tratamiento farmacológico
15.
FASEB J ; 26(10): 4264-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22782974

RESUMEN

The aging suppressor geneKlotho is predominantly expressed in the kidney irrespective of species. Because Klotho protein is an essential component of an endocrine axis that regulates renal phosphate handling, the kidney-specific expression is biologically relevant; however, little is known about its underlying mechanisms. Here we provide in vitro and in vivo evidence indicating that promoter methylation restricts the expression of the Klotho gene in the kidney. Based on evolutionary conservation and histone methylation patterns, the region up to -1200 bp was defined as a major promoter element of the human Klotho gene. This region displayed promoter activity equally in Klotho-expressing and -nonexpressing cells in transient reporter assays, but the activity was reduced to ∼20% when the constructs were integrated into the chromatin in the latter. Both endogenous and transfected Klotho promoters were 30-40% methylated in Klotho-nonexpressing cells, but unmethylated in Klotho-expressing renal tubular cells. DNA demethylating agents increased Klotho expression 1.5- to 3.0-fold in nonexpressing cells and restored the activity of silenced reporter constructs. Finally, we demonstrated that a severe hypomorphic allele of Klotho had aberrant CpG methylation in kl/kl mice. These findings might be useful in therapeutic intervention for accelerated aging and several complications caused by Klotho down-regulation.


Asunto(s)
Metilación de ADN/fisiología , Glucuronidasa/metabolismo , Riñón/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Línea Celular , Metilación de ADN/genética , Glucuronidasa/genética , Humanos , Immunoblotting , Proteínas Klotho , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37581569

RESUMEN

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Asunto(s)
Resistencia a Antineoplásicos , Factor de Transcripción Ikaros , Lenalidomida , Mieloma Múltiple , Proteínas Proto-Oncogénicas c-fos , Animales , Humanos , Ratones , Médula Ósea , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Transactivadores/uso terapéutico , Factor de Transcripción AP-1/uso terapéutico , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo
17.
Blood Adv ; 7(4): 508-524, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35930695

RESUMEN

Extramedullary disease (EMD) is known to be associated with chemoresistance and poor prognosis in multiple myeloma (MM); however, the mechanisms of its development are not fully understood. Elucidating the mechanism of EMD development and its therapeutic targeting would greatly contribute to further improvement of treatment outcome in patients with MM. Here, we show that bone marrow stroma cell-derived hyaluronan (HA) elicits homophilic interactions of MM cells by binding to surface CD44, especially long-stretch variants, under physiological shear stress and generates cell clusters that might develop into EMD. We recapitulated the development of EMD via administration of HA in a syngeneic murine MM model in a CD44-dependent manner. HA-induced MM cell clusters exhibited the specific resistance to proteasome inhibitors (PIs) in vitro and in murine models via γ-secretase-mediated cleavage of the intracellular domains of CD44, which in turn transactivated PI resistance-inducible genes. Treatment of HA-injected mice with anti-CD44 antibody or γ-secretase inhibitors readily suppressed the development of EMD from transplanted MM cells and significantly prolonged the survival of recipients by overcoming PI resistance. The HA-CD44 axis represents a novel pathway to trigger EMD development and could be a target of the prediction, prevention, and treatment of EMD in patients with MM.


Asunto(s)
Ácido Hialurónico , Mieloma Múltiple , Ratones , Animales , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Secretasas de la Proteína Precursora del Amiloide
18.
J Cell Physiol ; 227(3): 1138-47, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21567403

RESUMEN

Latexin is the only known carboxypeptidase A inhibitor in mammals and shares structural similarity with cystatin C, suggesting that latexin regulates the abundance of as yet unidentified target proteins. A forward genetic approach revealed that latexin is involved in homeostasis of hematopoietic stem cells (HSCs) in mice; however, little is known about the mechanisms by which latexin negatively affects the numbers of HSCs. In this study, we found that latexin is preferentially expressed in hematopoietic stem/progenitor cells, and is co-localized with the molecules responsible for the interaction of HSCs with a bone marrow niche, such as N-cadherin, Tie2, and Roundabout 4. Latexin-knockout young female mice showed an increase in the numbers of KSL (c-Kit(+)/Sca-1(+)/linegae marker-negative) cells, which may be attributable to enhanced self-renewal because latexin-deficient KSL cells formed more colonies than their wild-type counterparts in methylcellulose culture. Proteomic analysis of Sca-1(+) bone marrow cells demonstrated that latexin ablation reduced the abundance of multiple cellular proteins, including N-cadherin, Tie2, and Roundabout 4. Finally, we found that latexin expression was lost or greatly reduced in approximately 50% of human leukemia/lymphoma cell lines. These results imply that latexin inhibits the self-renewal of HSCs by facilitating the lodgment of HSCs within a bone marrow niche to maintain HSC homeostasis.


Asunto(s)
Antígenos/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Leucemia/patología , Linfoma/patología , Animales , Antígenos/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Femenino , Regulación Leucémica de la Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Células Jurkat , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Ratones , Ratones Noqueados
19.
Blood ; 116(3): 406-17, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20351311

RESUMEN

Bortezomib is now widely used for the treatment of multiple myeloma (MM); however, its action mechanisms are not fully understood. Despite the initial results, recent investigations have indicated that bortezomib does not inactivate nuclear factor-kappaB activity in MM cells, suggesting the presence of other critical pathways leading to cytotoxicity. In this study, we show that histone deacetylases (HDACs) are critical targets of bortezomib, which specifically down-regulated the expression of class I HDACs (HDAC1, HDAC2, and HDAC3) in MM cell lines and primary MM cells at the transcriptional level, accompanied by reciprocal histone hyperacetylation. Transcriptional repression of HDACs was mediated by caspase-8-dependent degradation of Sp1 protein, the most potent transactivator of class I HDAC genes. Short-interfering RNA-mediated knockdown of HDAC1 enhanced bortezomib-induced apoptosis and histone hyperacetylation, whereas HDAC1 overexpression inhibited them. HDAC1 overexpression conferred resistance to bortezomib in MM cells, and administration of the HDAC inhibitor romidepsin restored sensitivity to bortezomib in HDAC1-overexpressing cells both in vitro and in vivo. These results suggest that bortezomib targets HDACs via distinct mechanisms from conventional HDAC inhibitors. Our findings provide a novel molecular basis and rationale for the use of bortezomib in MM treatment.


Asunto(s)
Ácidos Borónicos/uso terapéutico , Histona Desacetilasas/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/enzimología , Pirazinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Ácidos Borónicos/administración & dosificación , Bortezomib , Caspasa 8/metabolismo , Línea Celular Tumoral , Depsipéptidos/administración & dosificación , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/clasificación , Histona Desacetilasas/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Pirazinas/administración & dosificación , ARN Interferente Pequeño/genética , Factor de Transcripción Sp1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Blood ; 116(6): 962-70, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20519628

RESUMEN

LMO2, a critical transcription regulator of hematopoiesis, is involved in human T-cell leukemia. The binding site of proline and acidic amino acid-rich protein (PAR) transcription factors in the promoter of the LMO2 gene plays a central role in hematopoietic-specific expression. E2A-HLF fusion derived from t(17;19) in B-precursor acute lymphoblastic leukemia (ALL) has the transactivation domain of E2A and the basic region/leucine zipper domain of HLF, which is a PAR transcription factor, raising the possibility that E2A-HLF aberrantly induces LMO2 expression. We here demonstrate that cell lines and a primary sample of t(17;19)-ALL expressed LMO2 at significantly higher levels than other B-precursor ALLs did. Transfection of E2A-HLF into a non-t(17;19) B-precursor ALL cell line induced LMO2 gene expression that was dependent on the DNA-binding and transactivation activities of E2A-HLF. The PAR site in the LMO2 gene promoter was critical for E2A-HLF-induced LMO2 expression. Gene silencing of LMO2 in a t(17;19)-ALL cell line by short hairpin RNA induced apoptotic cell death. These observations indicated that E2A-HLF promotes cell survival of t(17;19)-ALL cells by aberrantly up-regulating LMO2 expression. LMO2 could be a target for a new therapeutic modality for extremely chemo-resistant t(17;19)-ALL.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Metaloproteínas/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfocitos B/fisiología , Factores de Transcripción/metabolismo , Translocación Genética , Proteínas Adaptadoras Transductoras de Señales , Apoptosis/fisiología , Western Blotting , Línea Celular Tumoral , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 19 , Sangre Fetal/citología , Regulación Leucémica de la Expresión Génica , Humanos , Proteínas con Dominio LIM , Lentivirus/genética , Metaloproteínas/metabolismo , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Precursoras de Linfocitos B/citología , Regiones Promotoras Genéticas/fisiología , Proteínas Proto-Oncogénicas , ARN Interferente Pequeño , Factores de Transcripción/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA