Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(9): 3320-39, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573290

RESUMEN

Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/efectos de la radiación , Axones/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Neuronas/citología , Rayos Ultravioleta , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/ultraestructura , Células Cultivadas , Embrión de Mamíferos , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroblastoma/patología , Neuronas/efectos de la radiación , Presenilina-1/deficiencia , Presenilina-2/deficiencia , Transfección
2.
PLoS One ; 7(1): e29755, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22272245

RESUMEN

The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aß) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aß and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aß, supporting the previously established connection between KLC1, Tau and Aß. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Antígenos de Superficie/metabolismo , Western Blotting , Línea Celular , Proliferación Celular , Células Madre Embrionarias/citología , Citometría de Flujo , Humanos , Cariotipificación , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuritas/metabolismo , Neuronas/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Proteínas tau/metabolismo
3.
PLoS One ; 6(3): e17540, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21407814

RESUMEN

BACKGROUND: Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.


Asunto(s)
Membrana Celular/metabolismo , Separación Celular/métodos , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Animales , Anticuerpos/metabolismo , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Ratones , Modelos Biológicos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA