Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 58(14): 9432-9442, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241327

RESUMEN

Tartrate (Tar2-) was originally employed in this work as a chelating/structure-directing agent for hydrothermal crystallization of ZnWO4, where the decisive roles of Tar2-/Zn2+/WO42- molar ratio, solution pH (7-10), and the use of ethylene glycol (EG) cosolvent in phase/morphology evolution were deciphered in detail. It was unambiguously manifested that Tar2- may remarkably retard the intrinsically preferred [001] growth of ZnWO4, transform 1D nanorods to 0D nanoparticles and then to 2D platelets, and meanwhile induce face-to-face alignment of the platelets to form spheroidal, ellipsoidal and snowflakelike 3D architectures, where the 2D crystallites were revealed to develop via oriented attachment (colattice) of non-(00l) facets. A lower solution pH and excessive WO42- were clearly shown to enhance and offset the effect of Tar2-, which led to ellipsoidal assemblies of substantially larger 2D crystallites and suppressed 2D growth/3D assembly of ZnWO4 crystallites, respectively. With the spheroidal architectures for example, doping ZnWO4 with RE3+ yielded (Zn0.98RE0.02)WO4 phosphors (RE = Sm, Eu, Tb, and Dy, respectively) that show luminescence overlapped from the typical linelike and broad-band (∼350-700 nm) emissions of RE3+ and WO6, respectively. The luminescence color of the sample was found to drift away from the blue corner of the CIE chromaticity diagram with RE3+ doping and to be dependent on the type of RE3+.

2.
Inorg Chem ; 58(1): 890-899, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30570255

RESUMEN

Monoclinic (m-) structured (La0.96- xCe0.04Tb x)PO4 phosphor monospheres ( x = 0-0.12) of excellent dispersion and morphology uniformity were calcined (≥600 °C) from their precipitated precursor spheres (∼2.0 µm) of a hexagonal (h-) structure for efficient and multicolor luminescence. The h → m phase transition, driven by dehydration, was originally proposed to proceed in a topotactic manner, which involves displacement of the RE-O polyhedra (RE: rare-earth) along the a/ b axis and slight expansion of the {010} and {100} interplanar spacings of the hydrated h-phase to form the {120} and {100} planes of the anhydrous m-phase, respectively. Analysis of the energy process involving the optically active Ce3+ and Tb3+ ions found efficient Ce3+ → Tb3+ energy transfer occurring via electric dipole-quadrupole interaction, whose efficiency reached the highest value of ∼44.48% at x = 0.10. The Tb3+ codoped phosphors simultaneously displayed the characteristic emissions of Ce3+ (∼313 nm) and Tb3+ (∼545 nm) upon exciting the Ce3+ ions with 275 nm UV light, with which the emission color was finely tuned from dark blue to green by increasing the Tb3+ content. Fluorescence decay analysis found decreasing and almost constant lifetime values for the Ce3+ and Tb3+ emissions at a higher Tb3+ content, respectively, and the phosphor presented the highest external quantum efficiency of ∼84.67% at x = 0.10. The excellent luminescent performance and morphology uniformity may allow the monospheres to find application in lighting and display technologies.

3.
Inorg Chem ; 57(11): 6632-6640, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775048

RESUMEN

Hydrothermal reaction at 200 °C was systematically undertaken in wide ranges of solution pH (4-13) and W/La molar ratio ( R = 0.5-2), without using any organic additive, to investigate the effect of hydrothermal parameter on product property and the underlying mechanism. Combined analysis by X-ray diffraction (XRD), inductively coupled plasma (ICP) spectroscopy, elemental mapping, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that either a decreasing pH or increasing R value yielded a product richer in W and, conversely, richer in La. The results were interpreted from the solution chemistry of La3+ and tungstate ions. As an outcome of our 40 well-designed experiments, four La tungstates-La2W3O12, La2W2O9, La14W8O45, and La6W2O15-were successfully obtained in a phase-pure form by calcining their hydrothermal precursors. Phase and morphology evolution, structure features, and properties of Eu3+ emission were, for the first time, comparatively investigated for the four compounds. Spectral analysis found that the 5 at. % Eu3+-doped La2W3O12 phosphor exhibits the highest quantum efficiency (∼47%), more red component, and the shortest fluorescence lifetime of luminescence (∼0.72 ms).

4.
Sci Technol Adv Mater ; 18(1): 447-457, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740561

RESUMEN

Hexagonal (Gd0.95RE0.05)PO4·nH2O nanowires ~300 nm in length and ~10 nm in diameter have been converted from (Gd0.95RE0.05)2(OH)5NO3·nH2O nanosheets (RE = Eu, Tb) in the presence of monoammonium phosphate (NH4H2PO4) and ethylene diamine tetraacetic acid (EDTA). They were characterized by X-ray diffraction, thermogravimetry, electron microscopy, and Fourier transform infrared and photoluminescence spectroscopies. It is shown that EDTA played an essential role in the morphology development of the nanowires. The hydrothermal products obtained up to 180 °C are of a pure hexagonal phase, while monoclinic phosphate evolved as an impurity at 200 °C. The nanowires undergo hexagonal→monoclinic phase transformation upon calcination at ≥600 °C to yield a pure monoclinic phase at ~900 °C. The effects of calcination on morphology, excitation/emission, and fluorescence decay kinetics were investigated in detail with (Gd0.95Eu0.05)PO4 as example. The abnormally strong 5D0→7F4 electric dipole Eu3+ emission in the hexagonal phosphates was ascribed to site distortion. The process of energy migration was also discussed for the optically active Gd3+ and Eu3+/Tb3+ ions.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36431642

RESUMEN

Highly optically transparent polycrystalline fluorapatite ceramics with hexagonal crystal structures were fabricated via a liquid-phase synthesis of fluorapatite powder, followed by spark plasma sintering (SPS). The effect of sintering temperature, as observed using a thermopile, on the optical transmittance and microstructure of the ceramics was investigated in order to determine suitable sintering conditions. As a result, high optical transmittance was obtained in the SPS temperature range of 950-1100 °C. The highest optical transmittance was obtained for the ceramic sample sintered at 1000 °C, and its average grain size was evaluated at only 134 nm. The grain size dramatically increased with temperature, and the ceramics became translucent at SPS temperatures above 1200 °C. The mechanical and thermal properties of the ceramics were measured to evaluate the thermal shock parameter, which was found to be comparable to or slightly smaller than that of single-crystal fluorapatite. This transparent polycrystalline fluorapatite ceramic material should prove useful in a wide range of applications, for example as a biomaterial or optical/laser material, in the future. Furthermore, the knowledge obtained in this study should help to promote the application of this ceramic material.

6.
Sci Technol Adv Mater ; 12(5): 055003, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27877441

RESUMEN

Aiming to characterize the effect of sintering temperature on transparency of zirconia, we have evaluated the optical properties and microstructure of translucent cubic zirconia prepared by high-pressure spark plasma sintering (SPS) at 1000-1200 ○C. Color centers (oxygen vacancies with trapped electrons) and residual pores were primary defects in the samples. In SPS samples, the total forward transmittance and in-line transmittance are mainly affected by color centers with a limited contribution from residual pores; in contrast, the changes in reflectance are only related to the porosity. The amounts of color centers and residual pores increase with sintering temperature that reduces the total forward and in-line transmittance of the as-sintered zirconia. Annealing in oxidizing atmosphere improves the total forward and in-line transmittance. During the annealing, the concentration of color centers decreases but the porosity increases.

7.
Dalton Trans ; 50(29): 10147-10158, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34231601

RESUMEN

With malate (Mal2-) as a new type of chelate, tetragonal (t-) and monoclinic (m-) structured LaVO4:Eu crystals (∼10-60 nm) were selectively crystallized as nanosquares and nanorods via a hydrothermal reaction at 200 °C for 24 h. The effects of the Mal2-:(La,Eu)3+ molar ratio, solution pH and Eu3+ content on the phase structure and crystal morphology were systematically investigated and elucidated. The competition between OH- and Mal2- toward rare earth ions was discussed to play a critical role in phase selection, and the t-phase can only be fabricated at pH ∼ 6-8 with the assistance of Mal2-. The optimal Eu3+ content for luminescence was determined to be ∼5 at% under the VO43- → Eu3+ energy transfer mechanism. Experimental comparison showed that t-(La0.95Eu0.05)VO4 (λex = 275 nm, λem = 620 nm) emits ∼5.3 times as strong as m-(La0.95Eu0.05)VO4 does (λex = 313 nm, λem = 616 nm), while theoretical analysis revealed that the 5D0 level of Eu3+ has a quantum efficiency of ∼80% for the former and ∼70% for the latter. Besides, the t- and m-(La0.95Eu0.05)VO4 nanocrystal phosphors were analyzed to have fluorescence lifetimes of ∼1.53 ± 0.01 and 2.28 ± 0.01 ms for their 620 and 616 nm red emissions, respectively.

8.
Sci Rep ; 9(1): 10300, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311952

RESUMEN

Transparent polycrystalline ceramics with cubic crystal structure have played important roles in a wide variety of solid-state laser applications, whereas for non-cubic structures, single crystal only has been used. For further progress in optical technologies, effective materials beyond the current limitations are necessary. Here we report a new type of non-cubic ceramic laser material that overturns conventional common sense. It is hexagonal Nd-doped fluorapatite (Nd:FAP) ceramics with an optical quality comparable to single crystal while having random crystal orientation. It is composed of ultrafine grains with a loss coefficient of 0.18 cm-1 at a lasing wavelength of 1063 nm, and its laser oscillation was demonstrated. This is the first verification of lasing in randomly oriented non-cubic ceramics. Laser oscillation in the non-cubic ceramics was realized through both advanced liquid-phase nano-powder synthesis technology and highly controlled pulsed-current sintering techniques. Our findings should open new avenues for future solid-state laser and optical applications.

9.
ACS Biomater Sci Eng ; 5(10): 5266-5272, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455231

RESUMEN

Bone tissue engineering aims to regenerate defected bones by combining cells, scaffolds, and growth factors. In general, defected bone tissues are treated with barrier membranes or guiding scaffolds to achieve bone restoration. However, the growth rate of bone tissue is slower than that of adjacent soft tissue. Therefore, we propose patient-customizable guided bone regeneration (GBR) and membrane-guided tissue regeneration (GTR) scaffold hybrid constructs for precise bone tissue restoration without dimensional collapse beyond the critical bone defect size. Silk fibroin (SF) nanofiber membranes and poly(glycolic acid) (PGA) scaffolds were fabricated using electrospinning and hot-melt additive manufacturing methods based on a computer-generated scaffold design. Their manipulation parameters, microstructures, compressive moduli, and biodegradability were investigated. The initial attachment and proliferation of preosteoblasts on a PGA scaffold were analyzed based on seeding efficiency and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The regenerated bone volumes of control and SF-PGA hybrid scaffolds were 14.8 and 21.4%, respectively, after 8 weeks of in vivo rabbit calvarial defect regeneration. The SF-PGA hybrid scaffold group exhibits greater regeneration of bone tissue than the control and PGA scaffold groups, indicating that this is a promising material combination as a GBR-GTR agent.

10.
Dalton Trans ; 46(37): 12683-12691, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28914305

RESUMEN

Crystallization of the Ln2(OH)5NO3·nH2O layered hydroxide (LLnH) is the most difficult for the three smallest lanthanide ions of Tm, Yb and Lu. By applying a novel two-step crystallization technique, which involves chemical precipitation at a freezing-temperature of ∼4 °C and subsequent Ostwald ripening at 50 °C for Tm and Yb and 65 °C for Lu, the three compounds have been obtained in a phase-pure form without the use of any mineralizer. The resulting LTmH and LYbH (n ∼ 1.5) were shown to accommodate free NO3- anions in the interlayer gallery, which are readily exchangeable by DS- (C12H25OSO3-). Delamination of the DS- derivatives in formamide produced micron-sized nanosheets of ∼1.7 nm thick. A similar anion exchange was found to hardly proceed for LLuH even at 65 °C, owing to the direct coordination of the interlayer NO3- with the Lu3+ center.

11.
Sci Rep ; 7: 44755, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303948

RESUMEN

Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

12.
Biomater Res ; 19: 10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26331080

RESUMEN

BACKGROUND: To develop biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bones have been irradiated by an electron beam to change the basic structures of their inorganic materials. The optimal electron beam energy and individual dose have not been established for maximizing the bony regeneration capacity in electron beam irradiated bone. RESULTS: Commercial products consisting of four allogenic bones, six xenogenic bones, and six synthetic bones were used in this study. We used 1.0-MeV and 2.0 MeV linear accelerators (power: 100 KW, pressure; 115 kPa, temperature; -30 to 120°C, sensor sensitivity: 0.1-1.2 mV/kPa, generating power sensitivity: 44.75 mV/kPa, supply voltage: 50.25 V), and a microtrone with different individual irradiation doses such as 60 kGy and 120 kGy. Additional in vitro analyses were performed by elementary analysis using field emission scanning electron microscopy (FE-SEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal laser scanning microscopy (CLSM). In vivo clinical, radiographic, and micro-computed tomography (Micro-CT) with bone marrow density (BMD) analysis was performed in 8- and 16-week-old Spraque-Dawley rats with calvarial defect grafts. CONCLUSIONS: Electron beam irradiation of bony substitutes has four main effects: the cross-linking of biphasic calcium phosphate bony apatite, chain-scissioning, the induction of rheological changes, and microbiological sterilization. These novel results and conclusions are the effects of electron beam irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA