Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 14(9)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29251418

RESUMEN

A high-performance top-gated graphene field-effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface-energy-engineered copolymer gate dielectric via a solvent-free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane and 1-vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p-doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (VDirac ) of the graphene FET can thus be systematically controlled. In particular, the VDirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field-effect hole and electron mobility values of over 7200 and 3800 cm2 V-1 s-1 , respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high-frequency flexible device applications.

2.
Rep Prog Phys ; 79(12): 124201, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27775925

RESUMEN

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

3.
Small ; 12(2): 185-9, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26619270

RESUMEN

A graphene thermoacoustic loudspeaker with a thin polymer mesh is fabricated using screen-printing. An experiment with substrates of various free-standing areas shows that a higher sound pressure level can be achieved as compared to previously reported graphene thermoacoustic loudspeakers. Moreover, a modified equation to predict the sound pressure level of the thermoacoustic loudspeaker with a thin and patterned substrate is proposed and verified by experimental results.

4.
Adv Mater ; 33(10): e2007239, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33491832

RESUMEN

Electronics with tunable shape and stiffness can be applied in broad range of applications because their tunability allows their use in either rigid handheld form or soft wearable form, depending on needs. Previous research has enabled such reconfigurable electronics by integrating a thermally tunable gallium-based platform with flexible/stretchable electronics. However, supercooling phenomenon caused in the freezing process of gallium impedes reliable and rapid bidirectional rigid-soft conversion, limiting the full potential of this type of "transformative" electronics. Here, materials and electronics design strategies are reported to develop a transformative system with a gallium platform capable of fast reversible mechanical switching. In this electronic system, graphene is used as a catalyst to accelerate the heterogeneous nucleation of gallium to mitigate the degree of supercooling. Additionally, a flexible thermoelectric device is integrated as a means to provide active temperature control to further reduce the time for the solid-liquid transition of gallium. Analytical and experimental results establish the fundamentals for the design and optimized operation of transformative electronics for accelerated bidirectional transformation. Proof-of-concept demonstration of a reconfigurable system, which can convert between rigid handheld electronics and a flexible wearable biosensor, demonstrates the potential of this design approach for highly versatile electronics that can support multiple applications.

5.
Soft Robot ; 8(6): 662-672, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33104411

RESUMEN

Dynamic stiffness tuning is a promising approach for shape reconfigurable systems that must adapt their flexibility in response to changing operational requirements. Among stiffness tuning technologies, phase change materials are particularly promising because they are size scalable and can be powered using portable electronics. However, the long transition time required for phase change is a great limitation for most applications. In this study, we address this by introducing a rapidly responsive variable rigidity module with a low melting point material and flexible thermoelectric device (f-TED). The f-TED can conduct bidirectional temperature control; thereby, both heating and cooling were accomplished in a single device. By performing local cooling, the phase transition time from liquid to solid is reduced by 77%. The module in its rigid state shows 14.7 × higher bending stiffness than in the soft state. The results can contribute to greatly widening the application of phase transition materials for variable rigidity.

6.
Sci Rep ; 10(1): 11403, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647270

RESUMEN

Thermal perception is essential for the survival and daily activities of people. Thus, it is desirable to realize thermal feedback stimulation for improving the sense of realism in virtual reality (VR) for users. For thermal stimulus, conventional systems utilize liquid circulation with bulky external sources or thermoelectric devices (TEDs) on rigid structures. However, these systems are difficult to apply to compact wearable gear used for complex hand motions to interact with VR. Furthermore, generating a rapid temperature difference, especially cooling, in response to a thermal stimulus in real-time is challenging for the conventional systems. To overcome this challenge and enhance wearability, we developed an untethered real-time thermal display glove. This glove comprised piezoelectric sensors enabling hand motion sensing and flexible TEDs for bidirectional thermal stimulus on skin. The customized flexible TEDs can decrease the temperature by 10 °C at room temperature in less than 0.5 s. Moreover, they have sufficiently high durability to withstand over 5,000 bends and high flexibility under a bending radius of 20 mm. In a user test with 20 subjects, the correlation between thermal perception and the displayed object's color was verified, and a survey result showed that the thermal display glove provided realistic and immersive experiences to users when interacting with VR.

7.
Soft Robot ; 7(6): 736-742, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32286158

RESUMEN

In this study, we introduce a haptic communication method using two-dimensional (2D) arrayed thermal haptic module. The 2D thermal haptic module delivers real-time information to user through the thermoception of the user's skin. Such 2D thermal haptic module could be realized using flexible thermoelectric (TE) device and independent temperature control of individual unit cell that are arranged in the form of 2D array. The independent temperature control and access to the specific TE unit cell could be achieved using active matrix addressing and serial H-bridge circuit. For the optimal design of the 2D thermal haptic module, an analysis of the spatial precision of human sense on temperature has been implemented. As a demonstration, the 2D thermal haptic module is attached to blind-assistive cane to inform the position of obstacles to the user. This study demonstrates that the flexible TE device can find a new application field as an information transfer tool, not only just as an energy generator or cooler, which are the conventional applications of TE device.

8.
ACS Nano ; 10(7): 7142-6, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27403730

RESUMEN

We demonstrate a hybrid integration of a graphene-based analog circuit and a silicon-based digital circuit in order to exploit the strengths of both graphene and silicon devices. This mixed signal circuit integration was achieved using a three-dimensional (3-D) integration technique where a graphene FET multimode phase shifter is fabricated on top of a silicon complementary metal-oxide-semiconductor field-effect transistor (CMOS FET) ring oscillator. The process integration scheme presented here is compatible with the conventional silicon CMOS process, and thus the graphene circuit can successfully be integrated on current semiconductor technology platforms for various applications. This 3-D integration technique allows us to take advantage of graphene's excellent inherent properties and the maturity of current silicon CMOS technology for future electronics.

9.
ACS Appl Mater Interfaces ; 8(34): 22295-300, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27532328

RESUMEN

We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA