Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 143(2): 313-24, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20946988

RESUMEN

c-Myc (Myc) is an important transcriptional regulator in embryonic stem (ES) cells, somatic cell reprogramming, and cancer. Here, we identify a Myc-centered regulatory network in ES cells by combining protein-protein and protein-DNA interaction studies and show that Myc interacts with the NuA4 complex, a regulator of ES cell identity. In combination with regulatory network information, we define three ES cell modules (Core, Polycomb, and Myc) and show that the modules are functionally separable, illustrating that the overall ES cell transcription program is composed of distinct units. With these modules as an analytical tool, we have reassessed the hypothesis linking an ES cell signature with cancer or cancer stem cells. We find that the Myc module, independent of the Core module, is active in various cancers and predicts cancer outcome. The apparent similarity of cancer and ES cell signatures reflects, in large part, the pervasive nature of Myc regulatory networks.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Acetilación , Animales , Línea Celular , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742810

RESUMEN

CP2c, also known as TFCP2, α-CP2, LSF, and LBP-1c, is a prototypic member of the transcription factor (TF) CP2 subfamily involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies including cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover unprecedented structural and functional aspects of CP2c using DSP crosslinking and Western blot in addition to conventional methods. We found that a monomeric form of a CP2c homotetramer (tCP2c; [C4]) binds to the known CP2c-binding DNA motif (CNRG-N(5~6)-CNRG), whereas a dimeric form of a CP2c, CP2b, and PIAS1 heterohexamer ([C2B2P2]2) binds to the three consecutive CP2c half-sites or two staggered CP2c binding motifs, where the [C4] exerts a pioneering function for recruiting the [C2B2P2]2 to the target. All CP2c exists as a [C4], or as a [C2B2P2]2 or [C2B2P2]4 in the nucleus. Importantly, one additional cytosolic heterotetrameric CP2c and CP2a complex, ([C2A2]), exerts some homeostatic regulation of the nuclear complexes. These data indicate that these findings are essential for the transcriptional regulation of CP2c in cells within relevant timescales, providing clues not only for the transcriptional regulation mechanism by CP2c but also for future therapeutics targeting CP2c function.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 46(10): 4933-4949, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29547954

RESUMEN

During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Eritropoyesis/fisiología , Globinas/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Células Eritroides/citología , Eritropoyesis/genética , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Hemoglobinas/biosíntesis , Hemoglobinas/genética , Humanos , Masculino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones Endogámicos BALB C , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
4.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722024

RESUMEN

Intrinsically disordered proteins exist as highly dynamic conformational ensembles of diverse forms. However, the majority of virtual screening only focuses on proteins with defined structures. This means that computer-aided drug discovery is restricted. As a breakthrough, understanding the structural characteristics of intrinsically disordered proteins and its application can open the gate for unrestricted drug discovery. First, we segmented the target disorder-to-order transition region into a series of overlapping 20-amino-acid-long peptides. Folding prediction generated diverse conformations of these peptides. Next, we applied molecular docking, new evaluation score function, and statistical analysis. This approach successfully distinguished known compounds and their corresponding binding regions. Especially, Myc proto-oncogene protein (MYC) inhibitor 10058F4 was well distinguished from others of the chemical compound library. We also studied differences between the two Methyl-CpG-binding domain protein 2 (MBD2) inhibitors (ABA (2-amino-N-[[(3S)-2,3-dihydro-1,4-benzodioxin-3-yl]methyl]-acetamide) and APC ((R)-(3-(2-Amino-acetylamino)-pyrrolidine-1-carboxylic acid tert-butyl ester))). Both compounds bind MBD2 through electrostatic interaction behind its p66α-binding site. ABA is also able to bind p66α through electrostatic interaction behind its MBD2-binding site while APC-p66α binding was nonspecific. Therefore, structural heterogeneity mimicking of the disorder-to-order transition region at the peptide level and utilization of the new docking score function represent a useful approach that can efficiently discriminate compounds for expanded virtual screening toward intrinsically disordered proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Descubrimiento de Drogas , Proteínas Intrínsecamente Desordenadas/química , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Humanos , Unión Proteica , Proto-Oncogenes Mas , Electricidad Estática
5.
Nucleic Acids Res ; 42(11): 6999-7011, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24799437

RESUMEN

Requiem (REQ/DPF2) was originally identified as an apoptosis-inducing protein in mouse myeloid cells and belongs to the novel Krüppel-type zinc finger d4-protein family of proteins, which includes neuro-d4 (DPF1) and cer-d4 (DPF3). Interestingly, when a portion of the REQ messenger ribonucleic acid (mRNA) 3' untranslated region (3'UTR), referred to as G8, was overexpressed in K562 cells, ß-globin expression was induced, suggesting that the 3'UTR of REQ mRNA plays a physiological role. Here, we present evidence that the REQ mRNA 3'UTR, along with its trans-acting factor, Staufen1 (STAU1), is able to reduce the level of REQ mRNA via STAU1-mediated mRNA decay (SMD). By screening a complementary deoxyribonucleic acid (cDNA) expression library with an RNA-ligand binding assay, we identified STAU1 as an interactor of the REQ mRNA 3'UTR. Specifically, we provide evidence that STAU1 binds to putative 30-nucleotide stem-loop-structured RNA sequences within the G8 region, which we term the protein binding site core; this binding triggers the degradation of REQ mRNA and thus regulates translation. Furthermore, we demonstrate that siRNA-mediated silencing of either STAU1 or UPF1 increases the abundance of cellular REQ mRNA and, consequently, the REQ protein, indicating that REQ mRNA is a target of SMD.


Asunto(s)
Regiones no Traducidas 3' , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Sitios de Unión , Línea Celular , Células HeLa , Humanos , Células K562 , Ratones , Conformación de Ácido Nucleico , Factores de Transcripción
6.
FASEB J ; 28(11): 4924-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25114178

RESUMEN

The structure and function of the Antarctic marine diatom Chaetoceros neogracile antifreeze protein (Cn-AFP), as well as its expression levels and characteristics of the ice-binding site, were analyzed in the present study. In silico analysis revealed that the Cn-AFP promoter contains both light- and temperature-responsive elements. Northern and Western blot analyses demonstrated that both Cn-AFP transcript and protein expression were strongly and rapidly stimulated by freezing, as well as temperature and high light stress. Immunogold labeling revealed that Cn-AFP is preferentially localized to the intracellular space near the chloroplast membrane. Recombinant Cn-AFP had clear antifreeze activity. Protein-folding simulation was used to predict the putative ice-binding sites in Cn-AFP, and site-directed mutagenesis of the Cn-AFP b-face confirmed their identification.


Asunto(s)
Proteínas Anticongelantes/química , Microalgas/química , Sitios de Unión/fisiología , Cristalización , Hielo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Estrés Fisiológico
7.
Biochim Biophys Acta ; 1823(2): 387-97, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22154818

RESUMEN

Protein kinase Cδ (PKCδ) plays a significant role in the regulation of growth, apoptosis, and differentiation in a diversity of cell types. We investigated the effect of PKCδ on Notch1 intracellular domain (NICD)-mediated transcription with Notch transcription reporter constructs. The results indicate that co-expression of PKCδ down-regulated NICD-dependent transcription. Co-expression of a dominant negative PKCδ (K376R) variant lacking kinase activity was also able to downregulate NICD-dependent transcription, suggesting that PKCδ exerts its inhibitory effect via a kinase-independent mechanism(s). Interestingly, expression of PKCδ as well as K376R induced NICD up-regulation by inhibiting proteasome-mediated degradation of NICD, indicating that NICD protein quantity is not proportional to its transcriptional activity. When the subcellular distribution of NICD was investigated by both subcellular fractionation and immunocytochemistry, it was found that PKCδ and K376R effectively impaired proper nuclear localization of NICD, possibly via a physical association between NICD and PKCδ, which was confirmed by co-immunoprecipitation experiments. Chromatin immunoprecipitation assays revealed that both PKCδ and K376R inhibit the association of NICD with the promoter region of its target gene, Hes1. Furthermore, silencing of PKCδ resulted in increased NICD nuclear localization and NICD transcriptional activity in MCF-7 cells. PKCδ silencing-induced increase in anti-apoptotic survivin could not rescue apoptosis induced by doxorubicin. The data herein indicate that PKCδ can induce down-regulation of NICD transcriptional activity via a kinase-independent inhibition of NICD nuclear targeting and dissociation of NICD from target gene promoters.


Asunto(s)
Regulación de la Expresión Génica , Proteína Quinasa C-delta/metabolismo , Receptor Notch1/metabolismo , Transcripción Genética , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Regulación hacia Abajo , Silenciador del Gen , Genes Reporteros , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ratones , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Quinasa C-delta/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Notch1/genética
8.
Anal Biochem ; 441(2): 147-51, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23871997

RESUMEN

To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Inmunoprecipitación/métodos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , ADN/análisis , Proteínas de Unión al ADN/análisis , Humanos , Ratones , Unión Proteica , Factores de Transcripción/análisis
9.
Int J Biol Macromol ; 252: 126526, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633550

RESUMEN

Proteins play a crucial role in many biological processes, where their interaction with other proteins are integral. Abnormal protein-protein interactions (PPIs) have been linked to various diseases including cancer, and thus targeting PPIs holds promise for drug development. However, experimental confirmation of the peculiarities of PPIs is challenging due to their dynamic and transient nature. As a complement to experimental technologies, multiple computational molecular docking (MD) methods have been developed to predict the structures of protein-protein complexes and their dynamics, still requiring further improvements in several issues. Here, we report an improved MD method, namely three-software docking (3SD), by employing three popular protein-peptide docking software (CABS-dock, HPEPDOCK, and HADDOCK) in combination to ensure constant quality for most targets. We validated our 3SD performance in known protein-peptide interactions (PpIs). We also enhanced MD performance in proteins having intrinsically disordered regions (IDRs) by applying the modified 3SD strategy, the three-software docking after removing random coiled IDR (3SD-RR), to the comparable crystal PpI structures. At the end, we applied 3SD-RR to the AlphaFold2-predicted receptors, yielding an efficient prediction of PpI pose with high relevance to the experimental data regardless of the presence of IDRs or the availability of receptor structures. Our study provides an improved solution to the challenges in studying PPIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery. SIGNIFICANCE STATEMENT: Protein-protein interactions (PPIs) are integral to life, and abnormal PPIs are associated with diseases such as cancer. Studying protein-peptide interactions (PpIs) is challenging due to their dynamic and transient nature. Here we developed improved docking methods (3SD and 3SD-RR) to predict the PpI poses, ensuring constant quality in most targets and also addressing issues like intrinsically disordered regions (IDRs) and artificial intelligence-predicted structures. Our study provides an improved solution to the challenges in studying PpIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas/química , Programas Informáticos , Péptidos/química
10.
Cancers (Basel) ; 15(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37444605

RESUMEN

Yin Yang 1 (YY1) is a transcription factor that regulates epigenetic pathways and protein modifications. CP2c is a transcription factor that functions as an oncogene to regulate cell proliferation. YY1 is known to interact with CP2c to suppress CP2c's transcriptional activity. This study aimed to investigate YY1 and CP2c expression in breast cancer and prognostic implications. In this study, YY1 and CP2c expression was evaluated using immunohistochemical staining, Western blot and RT-PCR assays. Of 491 patients with primary breast cancer, 138 patients showed YY1 overexpression. Luminal subtype and early stage were associated with overexpression (p < 0.001). After a median follow-up of 68 months, YY1 overexpression was found to be associated with a better prognosis (disease-free survival rates of 92.0% vs. 79.2%, p = 0.014). In Cox proportional hazards model, YY1 overexpression functioned as an independent prognostic factor after adjustment of hormone receptor/HER2 status and tumor size (hazard ratio of 0.50, 95% CI 0.26-0.98, p = 0.042). Quantitative analysis of YY1 and CP2c protein expression in tumors revealed a negative correlation between them. In conclusion, YY1 overexpression is a favorable prognostic biomarker in patients with breast cancer, and it has a negative correlation with CP2c at the protein level.

11.
Sci Adv ; 9(4): eadd4969, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706181

RESUMEN

Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.


Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Sumoilación , Citoplasma/metabolismo , Neoplasias/metabolismo , Ciclo Celular , Proteínas de Unión al ADN/metabolismo
12.
Adv Sci (Weinh) ; 10(33): e2305096, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845006

RESUMEN

Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Proteínas de Unión al ADN/genética , Neoplasias/genética , Mutaciones Letales Sintéticas , Medicina de Precisión , Factores de Transcripción/genética , Péptidos , Hidrolasas Diéster Fosfóricas/genética
13.
Mutat Res ; 749(1-2): 53-9, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22944079

RESUMEN

In this study we implemented a new assay using a nested real-time polymerase chain reaction (PCR) to detect radiation-induced common deletion (CD) in mitochondrial DNA (mtDNA) of human peripheral lymphocytes. A standard curve for real-time PCR was established by applying a plasmid DNA containing human normal mtDNA or mutated mtDNA. Human peripheral lymphocyte DNA was amplified and quantified by real-time PCR using primer sets for total damaged or mutated mtDNA, plus probes labeled with the fluorescent dyes. The first-round PCR generated multiple products were used as the template for a second-round PCR. We herein describe a nested real-time PCR assay capable of quantifying mtDNA bearing the CD in human peripheral lymphocytes following exposure (in vitro) to (137)Cs γ-rays in a dose range of 0.5 up to 5Gy. The reproducibility of this assay was evident for both unirradiated and irradiated samples by examining human blood lymphocytes from 14 donors. This technique was sensitive enough to detect deletions in mtDNA at low dose levels, as low as 0.5Gy, and higher levels of CD mtDNA were evident at higher doses (≥1Gy), however, there was no consistent dose-response relationship.


Asunto(s)
ADN Mitocondrial/efectos de la radiación , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Secuencia , ADN Mitocondrial/sangre , Humanos , Linfocitos/química , Sensibilidad y Especificidad
14.
Nucleic Acids Res ; 38(16): 5456-71, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20421208

RESUMEN

Data presented here extends our previous observations on α-globin transcriptional regulation by the CP2 and PIAS1 proteins. Using RNAi knockdown, we have now shown that CP2b, CP2c and PIAS1 are each necessary for synergistic activation of endogenous α-globin gene expression in differentiating MEL cells. In this system, truncated PIAS1 mutants lacking the ring finger domain recruited CP2c to the nucleus, as did wild-type PIAS1, demonstrating that this is a sumoylation-independent process. In vitro, recombinant CP2c, CP2b and PIAS1 bound DNA as a stable CBP (CP2c/CP2b/PIAS1) complex. Following PIAS1 knockdown in MEL cells, however, the association of endogenous CP2c and CP2b with the α-globin promoter simultaneously decreased. By mapping the CP2b- and CP2c-binding domains on PIAS1, and the PIAS1-binding domains on CP2b and CP2c, we found that two regions of PIAS1 that interact with CP2c/CP2b are required for its co-activator function. We propose that CP2c, CP2b, and PIAS1 form a hexametric complex with two units each of CP2c, CP2b, and PIAS1, in which PIAS1 serves as a clamp between two CP2 proteins, while CP2c binds directly to the target DNA and CP2b mediates strong transactivation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Eritroides/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Globinas alfa/genética , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Humanos , Ratones , Regiones Promotoras Genéticas , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/química , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química
15.
Biochem Biophys Res Commun ; 402(1): 110-5, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20920467

RESUMEN

We have previously reported that MMTR (MAT1-mediated transcriptional repressor) is a co-repressor that inhibits TFIIH-mediated transcriptional activity via interaction with MAT1 (Kang et al., 2007). Since MAT1 is a member of the CAK kinase complex that is crucial for cell cycle progression and that regulates CDK phosphorylation as well as the general transcription factor TFIIH, we investigated MMTR function in cell cycle progression. We found that MMTR over-expression delayed G1/S and G2/M transitions, whereas co-expression of MAT1 and MMTR rescued the cell growth and proliferation rate. Moreover, MMTR was required for inhibition of CAK kinase-mediated CDK1 phosphorylation. We also showed that the expression level of MMTR was modulated during cell cycle progression. Our data support the notion that MMTR is an intrinsic negative cell cycle regulator that modulates the CAK kinase activity via interaction with MAT1.


Asunto(s)
Ciclo Celular/genética , Regulación de la Expresión Génica , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Represoras/metabolismo , Proteína Quinasa CDC2/metabolismo , División Celular/genética , Línea Celular , Proliferación Celular , Receptor con Dominio Discoidina 1 , Fase G2/genética , Células HeLa , Humanos , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/genética
16.
Biol Reprod ; 82(6): 1162-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20147734

RESUMEN

Gonocytes are long-lived primary germ cells that reside in the center of seminiferous cords until differentiation into spermatogonia that drive spermatogenesis. In pigs, gonocytes have research value in the production of transgenic offspring through germline modification and transplantation. However, the rarity of pig gonocytes has raised the need for an efficient isolation method. Therefore, in this study we use components of extracellular matrix, laminin, fibronectin, and collagen type IV and their derivative, gelatin, to establish a negative selection system for functionally viable gonocytes in neonatal pig. We then demonstrate functional analysis with genetic modification using lentiviral transduction and successfully transplant the donor gonocytes, which colonized the seminiferous tubules of the recipient mouse. The most effective selection method was established by sequential use of laminin and gelatin, in which the purity of gonocytes was 80% and the recovery rate of gonocytes was 78%. The selected gonocytes were labeled with fluorescent dye PKH26 and transplanted into busulfan-treated immunodeficient mouse testes. The fluorescent gonocytes colonized the recipient testes, and the resultant germ cell colonies were visible up to 4 mo after transplantation. When gonocytes were transplanted after transduction with an enhanced green fluorescent protein marker gene using lentiviral vectors, the transduced germ cell colonies were visible up to 6 mo and displayed an estimated transduction efficiency of 11.1%. These results can be applied and extended to isolate and enrich gonocytes of other species for in vitro and in vivo studies and to assist in genetic modification of male germline stem cells of livestock species.


Asunto(s)
Separación Celular/métodos , Células Germinativas/citología , Porcinos , Testículo/citología , Animales , Busulfano/farmacología , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Gelatina/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Laminina/metabolismo , Lentivirus , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Selección Genética , Transducción Genética , Trasplante Heterólogo
17.
J Biomed Sci ; 17: 18, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20233453

RESUMEN

BACKGROUND: Akt regulates various cellular processes, including cell growth, survival, and metabolism. Recently, Akt's role in neurite outgrowth has also emerged. We thus aimed to identify neuronal function-related genes that are regulated by Akt. METHODS: We performed suppression subtractive hybridization on two previously established PC12 sublines, one of which overexpresses the wild-type (WT) form and the other, the dominant-negative (DN) form of Akt. These sublines respond differently to NGF's neuronal differentiation effect. RESULTS: A variety of genes was identified and could be classified into several functional groups, one of which was developmental processes. Two genes involved in neuronal differentiation and function were found in this group. v-Maf musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) induces the neuronal differentiation of PC12 cells and immature telencephalon neurons, and synaptotagmin I (SytI) is essential for neurotransmitter release. Another gene, syntenin-1 (Syn-1) was also recognized in the same functional group into which MafK and SytI were classified. Syn-1 has been reported to promote the formation of membrane varicosities in neurons. Quantitative reverse transcription polymerase chain reaction analyses show that the transcript levels of these three genes were lower in PC12 (WT-Akt) cells than in parental PC12 and PC12 (DN-Akt) cells. Furthermore, treatment of PC12 (WT-Akt) cells with an Akt inhibitor resulted in the increase of the expression of these genes and the improvement of neurite outgrowth. These results indicate that dominant-negative or pharmacological inhibition of Akt increases the expression of MafK, SytI, and Syn-1 genes. Using lentiviral shRNA to knock down endogenous Syn-1 expression, we demonstrated that Syn-1 promotes an increase in the numbers of neurites and branches. CONCLUSIONS: Taken together, these results indicate that Akt negatively regulates the expression of MafK, SytI, and Syn-1 genes that all participate in regulating neuronal integrity in some way or another.


Asunto(s)
Factor de Transcripción MafK/genética , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sinaptotagmina I/genética , Sinteninas/genética , Animales , Células Cultivadas , Regulación de la Expresión Génica , Factor de Transcripción MafK/metabolismo , Ratas , Sinaptotagmina I/metabolismo , Sinteninas/metabolismo
18.
Mol Cell Biol ; 27(10): 3578-88, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17371848

RESUMEN

A transcription corepressor, MAT1-mediated transcriptional repressor (MMTR), was found in mouse embryonic stem cell lines. MMTR orthologs (DMAP1) are found in a wide variety of life forms from yeasts to humans. MMTR down-regulation in differentiating mouse embryonic stem cells in vitro resulted in activation of many unrelated genes, suggesting its role as a general transcriptional repressor. In luciferase reporter assays, the transcriptional repression activity resided at amino acids 221 to 468. Histone deacetylase 1 (HDAC1) interacts with MMTR both in vitro and in vivo and also interacts with MMTR in the nucleus. Interestingly, MMTR activity was only partially rescued by competition with dominant-negative HDAC1(H141A) or by treatment with an HDAC inhibitor, trichostatin A (TSA). To identify the protein responsible for HDAC1-independent MMTR activity, we performed a yeast two-hybrid screen with the full-length MMTR coding sequence as bait and found MAT1. MAT1 is an assembly/targeting factor for cyclin-dependent kinase-activating kinase which constitutes a subcomplex of TFIIH. The coiled-coil domain in the middle of MAT1 was confirmed to interact with the C-terminal half of MMTR, and the MMTR-mediated transcriptional repression activity was completely restored by MAT1 in the presence of TSA. Moreover, intact MMTR was required to inhibit phosphorylation of the C-terminal domain in the RNA polymerase II largest subunit by TFIIH kinase in vitro. Taken together, these data strongly suggest that MMTR is part of the basic cellular machinery for a wide range of transcriptional regulation via interaction with TFIIH and HDAC.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Ciclina H , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Humanos , Ratones , Modelos Moleculares , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Factor de Transcripción TFIIH/genética , Factores de Transcripción , Quinasa Activadora de Quinasas Ciclina-Dependientes
19.
Nucleic Acids Res ; 36(14): 4521-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18586828

RESUMEN

GATA-1 is an erythroid activator that binds beta-globin gene promoters and DNase I hypersensitive sites (HSs) of the beta-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that binds to HS2, nor was DNase I hypersensitivity at HS2 or the promoter of a linked epsilon-globin gene altered. Reduction of NF-E2 using RNAi confirmed the overall importance of this activator in establishing LCR HSs. However, recruitment of the histone acetyltransferase CBP and RNA pol II to HS2 was diminished by GATA-1 loss. Transcription of epsilon-globin was severely compromised with loss of RNA pol II from the transcription start site and reduction of H3 acetylation and H3K4 di- and tri-methylation in coding sequences. In contrast, widespread detection of H3K4 mono-methylation was unaffected by loss of GATA-1 in HS2. These results support the idea that GATA-1 interaction in HS2 has a prominent and direct role in co-activator and pol II recruitment conferring active histone tail modifications and transcription activation to a target gene but that it does not, by itself, play a major role in establishing DNase I hypersensitivity.


Asunto(s)
Factor de Transcripción GATA1/fisiología , Globinas/genética , Región de Control de Posición , Transactivadores/fisiología , Activación Transcripcional , Acetilación , Sitios de Unión , Proteína de Unión a CREB/metabolismo , Desoxirribonucleasa I/metabolismo , Elementos de Facilitación Genéticos , Factor de Transcripción GATA1/antagonistas & inhibidores , Factor de Transcripción GATA1/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Células K562 , Metilación , Mutación , Subunidad p45 del Factor de Transcripción NF-E2/antagonistas & inhibidores , Subunidad p45 del Factor de Transcripción NF-E2/fisiología , Sistemas de Lectura Abierta , ARN Polimerasa II/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo
20.
Dev Reprod ; 24(4): 249-262, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33537512

RESUMEN

Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA