Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Free Radic Biol Med ; 223: 96-108, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067624

RESUMEN

The biological role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (Apex1) in modulating systemic inflammation remains unclear. This study aimed to assess the impact of Apex1 deficiency on systemic inflammation triggered by lipopolysaccharide (LPS) in a murine model. The methods involved transcriptomic analysis and assessments of inflammatory responses in age-matched 8-week-old Apex1+/- and wild-type Apex1+/+ mice, generated using the CRISPR/Cas9 system. Apex1+/- mice displayed no overt changes in body weight, however, Apex1 protein expressions in tissues were significantly reduced compared to wild-type mice. Furthermore, in Apex1+/- mice transcriptomic analysis showed that genes associated with antioxidant pathways were downregulated, and levels of superoxide production, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) were increased. Moreover, hematological analysis showed increased neutrophil levels and a twofold increase in the count of splenic lymphocyte antigen 6 family member G+ (Ly6G+) neutrophils in the Apex1+/- mice compared to those in Apex1+/+ mice. Furthermore, following LPS treatment, the levels of cytokines and chemokines, including interleukin-1ß, interleukin-10, tumor necrosis factor-α, and monocyte chemoattractant protein 1, increased in the Apex1+/- mice. The Kaplan-Meier curve showed a significant reduction in the survival rates of Apex1+/- mice treated with LPS compared to those of Apex1+/+ mice. The hepatic and lung injury scores and Ly6G+ neutrophil infiltration levels also increased in Apex1+/- mice after LPS treatment. These results showed that Apex1 deficiency exacerbated the LPS-induced tissue damage in the lung and liver. These findings illustrate that in vivo Apex1 deficiency exacerbates LPS-induced systemic inflammation, tissue damage, and mortality in a murine model, highlighting the crucial role of Apex1 in mitigating inflammatory responses and maintaining a holistic physiological equilibrium.

2.
Korean J Clin Oncol ; 19(2): 60-68, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229490

RESUMEN

PURPOSE: The isocitrate dehydrogenase (IDH) family plays an essential role in metabolism and energy production. The relative expression levels of IDH isoforms (IDH1, IDH2, and IDH3) have prognostic significance in several malignancies, including breast carcinoma. However, the IDH isozyme expression levels in different cancer stages and types have not been determined in breast carcinoma tissues. METHODS: We analyzed the messenger RNA (mRNA) and protein levels of IDH (IDH1, IDH2, and IDH3A) and α-ketoglutarate (α-KG) in 59 breast carcinoma tissues. RESULTS: The mRNA level of IDH2 was significantly increased at stages 2 and 3 in triple-negative and (ER-/PR-/HER+) breast cancers. However, the elevated α-KG level was only observed in stages 2 and 3, with no differences in the various breast carcinoma types. Western blotting analysis showed that IDH2 protein expression increased in the patient tissues and cell lines. An in vitro study showed IDH2 downregulation in the triple-negative breast cancer cell line MDA-MB-231 that inhibited cell proliferation and migration and induced cell cycle arrest in the G0/G1 phase. CONCLUSION: These findings suggest that different from IDH1 and IDH3, IDH2 is more highly expressed in stages 2 and 3 breast cancer tissues, especially in triple-negative breast cancer. IDH2 potentially serves as a target to detect unknown mechanisms in breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA