Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615203

RESUMEN

Parishin compounds are rare polyphenolic glucosides mainly found in the rhizome of the traditional Chinese medicinal plant, Gastrodia elata. These constituents are reported to have several biological and pharmacological activities. In the present study, two novel parishin derivatives not previously reported as plant-based phytochemicals were identified from a twig of Maclura tricuspidata (MT) and two new compounds were elucidated as 1-(4-(ß-d-glucopyranosyloxy)benzyl)-3-hydroxy-3-methylpentane-1,5-dioate (named macluraparishin E) and 1,3-bis(4-(ß-d-glucopyranosyloxy)benzyl)-3-hydroxy-3-methylpentane- 1,5-dioate (macluraparishin C), based on the experimental data obtained by UV-Visible (UV-Vis) spectroscopy, high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and nuclear magnetic resonance (NMR) spectroscopy. Additionally, gastrodin, parishin A and parishin B were positively identified by spectroscopic evidence and the comparison of HPLC retention time with the corresponding authentic standards. Gastrodin, parishin A and parishin B, macluraparishin E and macluraparishin C were found to be the most abundant constituents in the MT twig. The compositions and contents of these constituents were found to vary depending on the different parts of the MT plant. In particular, the contents of parishin A, parishin B, macluraparishin C and macluraparishin E were higher in the twig, bark and root than in the leaves, xylem and fruit.


Asunto(s)
Gastrodia , Maclura , Plantas Medicinales , Extractos Vegetales/química , Plantas Medicinales/química , Cromatografía Líquida de Alta Presión/métodos , Gastrodia/química
2.
Molecules ; 27(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500410

RESUMEN

Ripe fruits of Maclura tricuspidata (MT) are used as food material and a natural colorant in Korea. Although MT fruits have a deep red color due to carotenoid-like pigments, their chemical nature has not been explored in detail so far. The present study aimed at elucidating the chemical structures and composition of carotenoids in MT fruits and changes at different maturity stages. Two carotenoids from saponified MT fruit extract were isolated using repeated silica gel column chromatography. Based on interpretations of spectroscopic data, these compounds were determined as keto-carotenoids, i.e., capsanthin (3,3'-dihydroxy-ß,κ-caroten-6'-one) and cryptocapsin (3'-hydroxy-ß,κ-caroten-6'-one), and the contents of individual carotenoids were quantified with HPLC based on calibration curves obtained from authentic standards. The contents of capsanthin and cryptocapsin in the sample of saponified MT fruits were 57.65 ± 1.97 µg/g and 171.66 ± 4.85 µg/g as dry weight base (dw). The majority of these keto-carotenoids in the MT fruits were present in esterified forms with lauric, myristic or palmitic acid rather than in their free forms. The results also showed that esterification of these compounds occurred starting from early stage (yellow-brownish stage) of maturation. Considering the high cryptocapsin content, MT fruits can be applied as a potentially valuable source of cryptocapsin for food and medicinal application as well as a source of provitamin A.


Asunto(s)
Carotenoides , Maclura , Carotenoides/química , Frutas/química , Xantófilas/análisis , Cromatografía Líquida de Alta Presión
3.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203307

RESUMEN

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Maclura/química , FN-kappa B/metabolismo , Extractos Vegetales/química , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443407

RESUMEN

Minor ginsenosides, such as compounds (C)-K and C-Y, possess relatively better bioactivity than those of naturally occurring major ginsenosides. Therefore, this study focused on the biotransformation of major ginsenosides into minor ginsenosides using crude ß-glucosidase preparation isolated from submerged liquid culture of Fomitella fraxinea (FFEP). FFEP was prepared by ammonium sulfate (30-80%) precipitation from submerged culture of F. fraxinea. FFEP was used to prepare minor ginsenosides from protopanaxadiol (PPD)-type ginsenoside (PPDG-F) or total ginsenoside fraction (TG-F). In addition, biotransformation of major ginsenosides into minor ginsenosides as affected by reaction time and pH were investigated by TLC and HPLC analyses, and the metabolites were also identified by UPLC/negative-ESI-Q-TOF-MS analysis. FFEP biotransformed ginsenosides Rb1 and Rc into C-K via the following pathways: Rd → F2 → C-K for Rb1 and both Rd → F2→ C-K and C-Mc1 → C-Mc → C-K for Rc, respectively, while C-Y is formed from Rb2 via C-O. FFEP can be applied to produce minor ginsenosides C-K and C-Y from PPDG-F or TG-F. To the best of our knowledge, this study is the first to report the production of C-K and C-Y from major ginsenosides by basidiomycete F. fraxinea.


Asunto(s)
Ginsenósidos/aislamiento & purificación , Polyporaceae/enzimología , Sapogeninas/química , beta-Glucosidasa/química , Biotransformación , Técnicas de Cultivo de Célula , Cromatografía Líquida de Alta Presión , Ginsenósidos/química , Hidrólisis , beta-Glucosidasa/farmacología
5.
Molecules ; 24(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769845

RESUMEN

The stem bark of Toxicodendron vernicifluum (TVSB) has been widely used as a traditional herbal medicine and food ingredients in Korea. However, its application has been restricted due to its potential to cause allergies. Moreover, there is limited data available on the qualitative and quantitative changes in the composition of its phytochemicals during fermentation. Although the Formitella fraxinea-mediated fermentation method has been reported as an effective detoxification tool, changes to its bioactive components and the antioxidant activity that takes place during its fermentation process have not yet been fully elucidated. This study aimed to investigate the dynamic changes of urushiols, bioactive compounds, and antioxidant properties during the fermentation of TVSB by mushroom F. fraxinea. The contents of urushiols, total polyphenols, and individual flavonoids (fisetin, fustin, sulfuretin, and butein) and 1,2,3,4,6-penta-O-galloyl-ß-D-glucose (PGG) significantly decreased during the first 10 days of fermentation, with only a slight decrease thereafter until 22 days. Free radical scavenging activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) as an antioxidant function also decreased significantly during the first six to nine days of fermentation followed by a gentle decrease up until 22 days. These findings can be helpful in optimizing the F. fraxinea⁻mediated fermentation process of TVSB and developing functional foods with reduced allergy using fermented TVSB.


Asunto(s)
Antioxidantes/química , Fitoquímicos/química , Extractos Vegetales/química , Toxicodendron/química , Benzotiazoles/química , Catecoles/química , Fermentación , Taninos Hidrolizables/química , Corteza de la Planta/química , Corteza de la Planta/microbiología , Extractos Vegetales/farmacología , Polifenoles/química , Polyporaceae/química , Polyporaceae/metabolismo , Ácidos Sulfónicos/química
6.
Molecules ; 24(3)2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30720740

RESUMEN

Abstract: Maclura tricuspidata fruit contains various bioactive compounds and has traditionally been used in folk medicine and as valuable food material in Korea. The composition and contents of bioactive compounds in the fruit can be influenced by its maturity stages. In this study, total phenol, total flavonoid, individual polyphenolic compounds, total carotenoids and antioxidant activities at four maturity stages of the fruit were determined. Polyphenolic compounds were analyzed using high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and HPLC. Among 18 polyphenolic compounds identified in this study, five parishin derivatives (gastrodin, parishin A, B, C, E) were positively identified for the first time in this plant. These compounds were also validated and quantified using authentic standards. Parishin A was the most abundant component, followed by chlorogenic acid, gastrodin, eriodictyol glucoside, parishin C, parishin E and parishin B. The contents of all the polyphenolic compounds were higher at the immature and premature stages than at fully mature and overmature stages, while total carotenoid was found to be higher in the mature and overmature stages. Overall antioxidant activities by three different assays (DPPH, ABTS, FRAP) decreased as maturation progressed. Antioxidant properties of the fruit extract are suggested to be attributed to the polyphenols.


Asunto(s)
Antioxidantes/farmacología , Frutas/química , Maclura/química , Extractos Vegetales/farmacología , Antioxidantes/química , Carotenoides/análisis , Carotenoides/química , Cromatografía Líquida de Alta Presión , Frutas/crecimiento & desarrollo , Furanos/química , Maclura/crecimiento & desarrollo , Extractos Vegetales/química , Polifenoles/química , Reproducibilidad de los Resultados , Solventes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
J Nucl Med ; 65(10): 1645-1651, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39209545

RESUMEN

Quantification of 18F-FDG PET images is useful for accurate diagnosis and evaluation of various brain diseases, including brain tumors, epilepsy, dementia, and Parkinson disease. However, accurate quantification of 18F-FDG PET images requires matched 3-dimensional T1 MRI scans of the same individuals to provide detailed information on brain anatomy. In this paper, we propose a transfer learning approach to adapt a pretrained deep neural network model from amyloid PET to spatially normalize 18F-FDG PET images without the need for 3-dimensional MRI. Methods: The proposed method is based on a deep learning model for automatic spatial normalization of 18F-FDG brain PET images, which was developed by fine-tuning a pretrained model for amyloid PET using only 103 18F-FDG PET and MR images. After training, the algorithm was tested on 65 internal and 78 external test sets. All T1 MR images with a 1-mm isotropic voxel size were processed with FreeSurfer software to provide cortical segmentation maps used to extract a ground-truth regional SUV ratio using cerebellar gray matter as a reference region. These values were compared with those from spatial normalization-based quantification methods using the proposed method and statistical parametric mapping software. Results: The proposed method showed superior spatial normalization compared with statistical parametric mapping, as evidenced by increased normalized mutual information and better size and shape matching in PET images. Quantitative evaluation revealed a consistently higher SUV ratio correlation and intraclass correlation coefficients for the proposed method across various brain regions in both internal and external datasets. The remarkably good correlation and intraclass correlation coefficient values of the proposed method for the external dataset are noteworthy, considering the dataset's different ethnic distribution and the use of different PET scanners and image reconstruction algorithms. Conclusion: This study successfully applied transfer learning to a deep neural network for 18F-FDG PET spatial normalization, demonstrating its resource efficiency and improved performance. This highlights the efficacy of transfer learning, which requires a smaller number of datasets than does the original network training, thus increasing the potential for broader use of deep learning-based brain PET spatial normalization techniques for various clinical and research radiotracers.


Asunto(s)
Encéfalo , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Aprendizaje Profundo , Imagen por Resonancia Magnética , Persona de Mediana Edad , Anciano
8.
Nucl Med Mol Imaging ; 58(6): 354-363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39308485

RESUMEN

Purpose: Dopamine transporter imaging is crucial for assessing presynaptic dopaminergic neurons in Parkinson's disease (PD) and related parkinsonian disorders. While 18F-FP-CIT PET offers advantages in spatial resolution and sensitivity over 123I-ß-CIT or 123I-FP-CIT SPECT imaging, accurate quantification remains essential. This study presents a novel automatic quantification method for 18F-FP-CIT PET images, utilizing an artificial intelligence (AI)-based robust PET spatial normalization (SN) technology that eliminates the need for anatomical images. Methods: The proposed SN engine consists of convolutional neural networks, trained using 213 paired datasets of 18F-FP-CIT PET and 3D structural MRI. Remarkably, only PET images are required as input during inference. A cyclic training strategy enables backward deformation from template to individual space. An additional 89 paired 18F-FP-CIT PET and 3D MRI datasets were used to evaluate the accuracy of striatal activity quantification. MRI-based PET quantification using FIRST software was also conducted for comparison. The proposed method was also validated using 135 external datasets. Results: The proposed AI-based method successfully generated spatially normalized 18F-FP-CIT PET images, obviating the need for CT or MRI. The striatal PET activity determined by proposed PET-only method and MRI-based PET quantification using FIRST algorithm were highly correlated, with R 2 and slope ranging 0.96-0.99 and 0.98-1.02 in both internal and external datasets. Conclusion: Our AI-based SN method enables accurate automatic quantification of striatal activity in 18F-FP-CIT brain PET images without MRI support. This approach holds promise for evaluating presynaptic dopaminergic function in PD and related parkinsonian disorders.

9.
Nucl Med Mol Imaging ; 58(4): 246-254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932756

RESUMEN

Purpose: This study assesses the clinical performance of BTXBrain-Amyloid, an artificial intelligence-powered software for quantifying amyloid uptake in brain PET images. Methods: 150 amyloid brain PET images were visually assessed by experts and categorized as negative and positive. Standardized uptake value ratio (SUVR) was calculated with cerebellum grey matter as the reference region, and receiver operating characteristic (ROC) and precision-recall (PR) analysis for BTXBrain-Amyloid were conducted. For comparison, same image processing and analysis was performed using Statistical Parametric Mapping (SPM) program. In addition, to evaluate the spatial normalization (SN) performance, mutual information (MI) between MRI template and spatially normalized PET images was calculated and SPM group analysis was conducted. Results: Both BTXBrain and SPM methods discriminated between negative and positive groups. However, BTXBrain exhibited lower SUVR standard deviation (0.06 and 0.21 for negative and positive, respectively) than SPM method (0.11 and 0.25). In ROC analysis, BTXBrain had an AUC of 0.979, compared to 0.959 for SPM, while PR curves showed an AUC of 0.983 for BTXBrain and 0.949 for SPM. At the optimal cut-off, the sensitivity and specificity were 0.983 and 0.921 for BTXBrain and 0.917 and 0.921 for SPM12, respectively. MI evaluation also favored BTXBrain (0.848 vs. 0.823), indicating improved SN. In SPM group analysis, BTXBrain exhibited higher sensitivity in detecting basal ganglia differences between negative and positive groups. Conclusion: BTXBrain-Amyloid outperformed SPM in clinical performance evaluation, also demonstrating superior SN and improved detection of deep brain differences. These results suggest the potential of BTXBrain-Amyloid as a valuable tool for clinical amyloid PET image evaluation.

10.
J Nucl Med ; 64(4): 659-666, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328490

RESUMEN

This paper proposes a novel method for automatic quantification of amyloid PET using deep learning-based spatial normalization (SN) of PET images, which does not require MRI or CT images of the same patient. The accuracy of the method was evaluated for 3 different amyloid PET radiotracers compared with MRI-parcellation-based PET quantification using FreeSurfer. Methods: A deep neural network model used for the SN of amyloid PET images was trained using 994 multicenter amyloid PET images (367 18F-flutemetamol and 627 18F-florbetaben) and the corresponding 3-dimensional MR images of subjects who had Alzheimer disease or mild cognitive impairment or were cognitively normal. For comparison, PET SN was also conducted using version 12 of the Statistical Parametric Mapping program (SPM-based SN). The accuracy of deep learning-based and SPM-based SN and SUV ratio quantification relative to the FreeSurfer-based estimation in individual brain spaces was evaluated using 148 other amyloid PET images (64 18F-flutemetamol and 84 18F-florbetaben). Additional external validation was performed using an unseen independent external dataset (30 18F-flutemetamol, 67 18F-florbetaben, and 39 18F-florbetapir). Results: Quantification results using the proposed deep learning-based method showed stronger correlations with the FreeSurfer estimates than SPM-based SN using MRI did. For example, the slope, y-intercept, and R 2 values between SPM and FreeSurfer for the global cortex were 0.869, 0.113, and 0.946, respectively. In contrast, the slope, y-intercept, and R 2 values between the proposed deep learning-based method and FreeSurfer were 1.019, -0.016, and 0.986, respectively. The external validation study also demonstrated better performance for the proposed method without MR images than for SPM with MRI. In most brain regions, the proposed method outperformed SPM SN in terms of linear regression parameters and intraclass correlation coefficients. Conclusion: We evaluated a novel deep learning-based SN method that allows quantitative analysis of amyloid brain PET images without structural MRI. The quantification results using the proposed method showed a strong correlation with MRI-parcellation-based quantification using FreeSurfer for all clinical amyloid radiotracers. Therefore, the proposed method will be useful for investigating Alzheimer disease and related brain disorders using amyloid PET scans.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Amiloide , Proteínas Amiloidogénicas , Tomografía de Emisión de Positrones/métodos , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos
11.
Nanotechnology ; 23(25): 255301, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22652564

RESUMEN

Mushroom-shaped phase change memory (PCM) consisting of a Cr/In(3)Sb(1)Te(2) (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl(2). The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in(2).

12.
Prev Nutr Food Sci ; 26(4): 459-468, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35047443

RESUMEN

Aronia, blueberry, Korean raspberry, blackberry, mulberry, and red raspberry fruits cultivated in Korea were evaluated for total phenol content (TPC), total flavonoid content (TFC), total anthocyanin, and ascorbic acid content. All berries were assayed for antioxidant activities determined as 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid free radical scavenging activity, and ferric reducing antioxidant power. Individual phenolic compounds in aronia were also identified using high-performance liquid chromatography/quadrupole-time of flight mass spectrometry. TPC, TFC, total anthocyanin, and ascorbic acid contents of the fruit samples ranged from 17.05 to 135.55 mg of gallic acid equivalent/g dry weight (dw), 1.0 to 8.59 mg of rutin equivalent/g dw, 2.55 to 24.43 mg of cyanidin-3-O-glucoside equivalent/g dw, and 3.14 to 19.45 mg of ascorbic acid equivalent/g dw, respec-tively. Aronia and Korean raspberry showed the highest TPC, TFC, and total anthocyanin while red raspberry had the high-est ascorbic acid content. Antioxidant activities showed positive correlations to phenolic and anthocyanin contents suggesting antioxidant activity of berry samples is due to these compounds. Aronia had the highest antioxidant value among fruits.

13.
Appl Microsc ; 49(1): 12, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33580382

RESUMEN

Herein, we synthesize a core/shell Pt/a-CoOx nanocomposite via one-step synthesis using a strong reaction agent of borane t-butylamine(BBA) at 200 °C. Transmission electron microscopy study shows that the morphology of nanocomposites is controlled by the stirring time and perfect core/shell structure is formed with over 7 days stirring time.

14.
Foods ; 8(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835417

RESUMEN

Essential oil obtained from Maclura triscuspidata fruit has been reported to have functional properties. This study aimed at determining chemical compositions and antioxidant activities of steam-distilled essential oil (SDEO) and glycosidically bound aglycone fraction (GBAF) isolated from fully ripe M. triscuspidata fruit. SDEO was isolated by simultaneous steam distillation and extraction (SDE). GBAF was prepared by Amberlite XAD-2 adsorption of methanol extract, followed by methanol elution and enzymatic hydrolysis. Both fractions were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 76 constituents were identified from both oils. Apart from fatty acids and their esters, the SDEO contained p-cresol in the highest concentration (383.5 ± 17.7), followed by δ-cadinene (147.7 ± 7.7), ß-caryophyllene (145.7 ± 10.5), ß-ionone (141.0 ± 4.5), n-nonanal (140.3 ± 20.5), theaspirane A (121.3 ± 4.5) and theaspirane B (99.67 ± 9.05 µg/g). Thirteen carotenoid-derived compounds identified in the SDEO are being isolated from M. triscuspidata fruit for the first time. Out of the 22 components identified in GBAF, 14 were present only in the glycosidically bound volatiles. Antioxidant activity of the GBAF was higher than that of SDEO. These results suggest that glycosidically bound volatiles of M. triscuspidata fruit have a good potential as natural antioxidants.

15.
J Minim Invasive Gynecol ; 17(3): 397-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20417436

RESUMEN

We present a case report of an ovarian pregnancy after ipsilateral partial salpingectomy. A 19-year-old woman was admitted with vaginal bleeding and right lower abdominal pain. She had a history of right partial salpingectomy caused by a tubal pregnancy. The pregnancy test result was positive, and a right adnexal mass was identified by ultrasonography. Laparoscopy revealed a right ovarian pregnancy. Thus the possibility of ipsilateral ectopic pregnancy should be considered even when the patient has a history of salpingectomy total or partial.


Asunto(s)
Laparoscopía , Embarazo Ectópico/cirugía , Esterilización Tubaria , Diagnóstico Diferencial , Femenino , Humanos , Ovariectomía , Ovario/diagnóstico por imagen , Ovario/cirugía , Embarazo , Embarazo Ectópico/diagnóstico por imagen , Resultado del Tratamiento , Ultrasonografía Prenatal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA