RESUMEN
Optical vortices are beams of light that carry orbital angular momentum1, which represents an extra degree of freedom that can be generated and manipulated for photonic applications2-8. Unlike vortices in other physical entities, the generation of optical vortices requires structural singularities9-12, but this affects their quasiparticle nature and hampers the possibility of altering their dynamics or making them interacting13-17. Here we report a platform that allows the spontaneous generation and active manipulation of an optical vortex-antivortex pair using an external field. An aluminium/silicon dioxide/nickel/silicon dioxide multilayer structure realizes a gradient-thickness optical cavity, where the magneto-optic effects of the nickel layer affect the transition between a trivial and a non-trivial topological phase. Rather than a structural singularity, the vortex-antivortex pairs present in the light reflected by our device are generated through mathematical singularities in the generalized parameter space of the top and bottom silicon dioxide layers, which can be mapped onto real space and exhibit polarization-dependent and topology-dependent dynamics driven by external magnetic fields. We expect that the field-induced engineering of optical vortices that we report will facilitate the study of topological photonic interactions and inspire further efforts to bestow quasiparticle-like properties to various topological photonic textures such as toroidal vortices, polarization and vortex knots, and optical skyrmions.
RESUMEN
During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Músculo Esquelético , Factores de Transcripción , Animales , Ratones , Regulación de la Expresión Génica , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability. In vivo genetic analysis using Lsd1SA/SA mice with ablation of LSD1 phosphorylation and chemical approaches in wild-type mice with inhibition of PKCα or LSD1 activity show attenuated sepsis-induced inflammatory lung injury and mortality. Together, we demonstrate that the PKCα-LSD1-NF-κB signaling cascade is crucial for epigenetic control of the inflammatory response, and targeting this signaling could be a powerful therapeutic strategy for systemic inflammatory diseases, including sepsis.
Asunto(s)
Histona Demetilasas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Núcleo Celular/metabolismo , Epigénesis Genética/genética , Histona Demetilasas/genética , Inflamación/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación , Proteína Quinasa C/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
In the presence of water, the electrically conductive metal-organic framework (MOF) Cu3HHTT2 (H6HHTT = 2,3,7,8,12,13-hexahydroxy-4b1,5,10,15-tetraazanaphtho[1,2,3-gh]tetraphene) provides a conduit for proton transport, thereby becoming a dual ionic-electronic conductor. Owing to its dual conducting nature and its high density of imine and open metal sites, the MOF operates as a particularly sensitive chemiresistor, whose sensing mechanism changes with relative humidity. Thus, the interaction of NH3 gas with the MOF under low humidity promotes proton transport, which translates to high sensitivity for ammonia detection. Conversely, NO2 gas hinders proton conductivity, even under high relative humidity conditions, leading to large resistance variations in the humid regime. This dual ionic-electronic conduction-based gas sensor provides superior sensitivity compared to other conventional chemiresistors under similar conditions and highlights its potential as a platform for room-temperature gas sensors.
RESUMEN
The electrochemical reduction of CO2 in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C2+ products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C2+-active sites of Cu nanoparticles. This prompted us to design acid-stable Cu cluster precatalysts that are reduced in situ to active Cu nanoparticles in strong acid. Operando Raman and X-ray spectroscopy indicated that the bonding between the Cu cluster precatalyst ligand and in situ formed Cu nanoparticles preserves a high density of undercoordinated Cu sites, resulting in a C2H4 Faradaic efficiency of 62% at a low overpotential. The result is a 1.4-fold increase in energy efficiency compared with previous acidic CO2-to-C2+ electrocatalytic systems.
RESUMEN
BACKGROUND: This study aimed to validate apparent diffusion coefficient (ADC) values and thresholds to predict poor neurological outcomes in out-of-hospital cardiac arrest (OHCA) survivors by quantitatively analysing the ADC values via brain magnetic resonance imaging (MRI). METHODS: This observational study used prospectively collected data from two tertiary academic hospitals. The derivation cohort comprised 70% of the patients randomly selected from one hospital, whereas the internal validation cohort comprised the remaining 30%. The external validation cohort used the data from another hospital, and the MRI data were restricted to scans conducted at 3 T within 72-96 h after an OHCA experience. We analysed the percentage of brain volume below a specific ADC value at 50-step intervals ranging from 200 to 1200 × 10-6 mm2/s, identifying thresholds that differentiate between good and poor outcomes. Poor neurological outcomes were defined as cerebral performance categories 3-5, 6 months after experiencing an OHCA. RESULTS: A total of 448 brain MRI scans were evaluated, including a derivation cohort (n = 224) and internal/external validation cohorts (n = 96/128, respectively). The proportion of brain volume with ADC values below 450, 500, 550, 600, and 650 × 10-6 mm2/s demonstrated good to excellent performance in predicting poor neurological outcomes in the derivation group (area under the curve [AUC] 0.89-0.91), and there were no statistically significant differences in performances among the derivation, internal validation, and external validation groups (all P > 0.5). Among these, the proportion of brain volume with an ADC below 600 × 10-6 mm2/s predicted a poor outcome with a 0% false-positive rate (FPR) and 76% (95% confidence interval [CI] 68-83) sensitivity at a threshold of > 13.2% in the derivation cohort. In both the internal and external validation cohorts, when using the same threshold, a specificity of 100% corresponded to sensitivities of 71% (95% CI 58-81) and 78% (95% CI 66-87), respectively. CONCLUSIONS: In this validation study, by consistently restricting the MRI types and timing during quantitative analysis of ADC values in brain MRI, we observed high reproducibility and sensitivity at a 0% FPR. Prospective multicentre studies are necessary to validate these findings.
Asunto(s)
Paro Cardíaco Extrahospitalario , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Paro Cardíaco Extrahospitalario/diagnóstico por imagen , Estudios Prospectivos , Pronóstico , Sobrevivientes/estadística & datos numéricos , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Valor Predictivo de las Pruebas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatologíaRESUMEN
Autophagy, a catabolic process to remove unnecessary or dysfunctional organelles, is triggered by various signals including nutrient starvation. Depending on the types of the nutrient deficiency, diverse sensing mechanisms and signaling pathways orchestrate for transcriptional and epigenetic regulation of autophagy. However, our knowledge about nutrient type-specific transcriptional regulation during autophagy is limited. To understand nutrient type-dependent transcriptional mechanisms during autophagy, we performed single cell RNA sequencing (scRNAseq) in the mouse embryonic fibroblasts (MEFs) with or without glucose starvation (GS) as well as amino acid starvation (AAS). Trajectory analysis using scRNAseq identified sequential induction of potential transcriptional regulators for each condition. Gene regulatory rules inferred using TENET newly identified CCAAT/enhancer binding protein γ (C/EBPγ) as a regulator of autophagy in AAS, but not GS, condition, and knockdown experiment confirmed the TENET result. Cell biological and biochemical studies validated that activating transcription factor 4 (ATF4) is responsible for conferring specificity to C/EBPγ for the activation of autophagy genes under AAS, but not under GS condition. Together, our data identified C/EBPγ as a previously unidentified key regulator under AAS-induced autophagy.
Asunto(s)
Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Transcriptoma , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Autofagia/genética , Epigénesis Genética , Fibroblastos/metabolismo , Ratones , Análisis de la Célula IndividualRESUMEN
Owing to its pseudocapacitive, unidimensional, rapid ion channels, TiO2(B) is a promising material for application to battery electrodes. In this study, we align these channels by epitaxially growing TiO2(B) films with the assistance of an isostructural VO2(B) template layer. In a liquid electrolyte, binder-free TiO2(B) epitaxial electrodes exhibit a supercapacity near the theoretical value of 335 mA h g-1 and an excellent charge-discharge reproducibility for ≥200 cycles, which outperform those of other TiO2(B) nanostructures. For the all-solid-state configuration employing the LiPON solid electrolyte, excellent stability persists. Our findings suggest excellent potential for miniaturizing all-solid-state nanobatteries in self-powered integrated circuits.
RESUMEN
Embodying bosonic and interactive characteristics in two-dimensional space, excitons in transition metal dichalcogenides (TMDCs) have garnered considerable attention. The utilization of the strong-correlation effects, long-range transport, and valley-dependent properties requires customizing exciton decay dynamics. Vacuum-field manipulation allows radiative decay engineering without disturbing intrinsic material properties. However, conventional flat mirrors cannot customize the radiative decay landscape in TMDC's plane or support vacuum-field interference with desired spectrum and polarization properties. Here, we present a meta-mirror platform resolving the issues with more optical degrees of freedom. For neutral excitons of the monolayer MoSe2, the optical layout formed by meta-mirrors manipulated the radiative decay rate in space by 2 orders of magnitude and revealed the statistical correlation between emission intensity and spectral line width. Moreover, the anisotropic meta-mirror demonstrated polarization-dependent radiative decay control. Our platform would be promising to tailor two-dimensional distributions of lifetime, density, diffusion, and polarization of TMDC excitons in advanced opto-excitonic applications.
RESUMEN
To allow a high quality factor (Q-factor) to a sub-wavelength dielectric resonator, quasi-bound states in the continuum (Q-BICs) have gained much interest. However, the Q-BIC resonance condition is too sensitive to the geometry of the resonator, and its practical broadband generation on a single-wafer platform has been limited. Here we present that, employing the base angle as a structural degree of freedom, the truncated nano-cone resonator supports the Q-BIC resonance with a high Q-factor of >150 over a wide wavelength range of >100â nm. We expect our approach will boost the utilization of the Q-BIC resonance for various applications requiring broadband spectral tuning.
RESUMEN
Controlling the size of Au nanoparticles (NPs) and their interaction with the oxide support is important for their catalytic performance in chemical reactions, such as CO oxidation and water-gas shift. It is known that the oxygen vacancies at the surface of support oxides form strong chemical bonding with the Au NPs and inhibit their coarsening and deactivation. The resulting Au/oxygen vacancy interface also acts as an active site for oxidation reactions. Hence, small Au NPs are needed to increase the density of the Au/oxide interface. A dynamic way to control the size of the Au NPs on an oxide support is desirable but has been missing in the field. Here, we demonstrate an electrochemical method to control the size of the Au NPs by controlling the surface oxygen vacancy concentration of the support oxide. Oxides with different reducibilities, La0.8Ca0.2MnO3±Î´ and Pr0.1Ce0.9O2-δ, are used as model support oxides. By applying the electrochemical potential, we achieve a wide range of effective oxygen pressures, pO2 (10-37-1014 atm), in the support oxides. Applying the cathodic potential creates a high concentration of oxygen vacancies and forms finely distributed Au NPs with sizes of 7-13 nm at 700-770 °C in 10 min, while the anodic potential oxidizes the surface and increases the size of the Au NPs. The onset cathodic potential required to create small Au NPs depends strongly on the reducibility of the support oxide. The Au NPs did not undergo sintering even at 700-770 °C under the cathodic potential and also were stable in catalytically relevant conditions without potential.
Asunto(s)
Nanopartículas del Metal , Óxidos , Oro , OxígenoRESUMEN
The circadian clock is a self-sustaining oscillator that controls daily rhythms. For the proper circadian gene expression, dynamic changes in chromatin structure are important. Although chromatin modifiers have been shown to play a role in circadian gene expression, the in vivo role of circadian signal-modulated chromatin modifiers at an organism level remains to be elucidated. Here, we provide evidence that the lysine-specific demethylase 1 (LSD1) is phosphorylated by protein kinase Cα (PKCα) in a circadian manner and the phosphorylated LSD1 forms a complex with CLOCK:BMAL1 to facilitate E-box-mediated transcriptional activation. Knockin mice bearing phosphorylation-defective Lsd1(SA/SA) alleles exhibited altered circadian rhythms in locomotor behavior with attenuation of rhythmic expression of core clock genes and impaired phase resetting of circadian clock. These data demonstrate that LSD1 is a key component of the molecular circadian oscillator, which plays a pivotal role in rhythmicity and phase resetting of the circadian clock.
Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Oxidorreductasas N-Desmetilantes/metabolismo , Proteína Quinasa C-alfa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Proteínas CLOCK/metabolismo , Inmunoprecipitación de Cromatina , Histona Demetilasas , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Oscilometría , Oxidorreductasas N-Desmetilantes/genética , Fosforilación , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Núcleo Supraquiasmático/metabolismo , Factores de TiempoRESUMEN
Retinoic acid-related orphan receptor α (RORα) functions as a transcription factor for various biological processes, including circadian rhythm, cancer, and metabolism. Here, we generate intestinal epithelial cell (IEC)-specific RORα-deficient (RORαΔIEC) mice and find that RORα is crucial for maintaining intestinal homeostasis by attenuating nuclear factor κB (NF-κB) transcriptional activity. RORαΔIEC mice exhibit excessive intestinal inflammation and highly activated inflammatory responses in the dextran sulfate sodium (DSS) mouse colitis model. Transcriptome analysis reveals that deletion of RORα leads to up-regulation of NF-κB target genes in IECs. Chromatin immunoprecipitation analysis reveals corecruitment of RORα and histone deacetylase 3 (HDAC3) on NF-κB target promoters and subsequent dismissal of CREB binding protein (CBP) and bromodomain-containing protein 4 (BRD4) for transcriptional repression. Together, we demonstrate that RORα/HDAC3-mediated attenuation of NF-κB signaling controls the balance of inflammatory responses, and therapeutic strategies targeting this epigenetic regulation could be beneficial to the treatment of chronic inflammatory diseases, including inflammatory bowel disease (IBD).
Asunto(s)
Homeostasis/fisiología , Inflamación/metabolismo , Intestinos/fisiología , Receptores Nucleares Huérfanos/metabolismo , Animales , Epigénesis Genética/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Transcriptoma/fisiologíaRESUMEN
Critically ill patients in intensive care units (ICUs) are exposed to various risk factors for vitamin D deficiency. Vitamin D deficiency in extended-stay patients may result in decreased muscle mass and increased fat tissue, which may impair rehabilitation and recovery. Our study aimed to evaluate the degree of serum vitamin D deficiency in critically ill surgical patients and its association with clinical outcomes. Clinical data from 186 adult male (n = 121; 65.1%) and female (n = 65; 34.9%) patients hospitalized in surgical ICUs at Ajou University Hospital from April 2015 to September 2016 were retrospectively analyzed. All adult surgical patients between the age of 18 and 88 years were enrolled. The mean serum 25-hydroxyvitamin D (25[OH]D) level of all patients was 17.8 ng/mL. A total of 120 patients (64.5%) with serum 25(OH)D levels < 20 ng/mL were classified as the deficiency group. A prolonged hospital stay was observed among the deficiency group but was not statistically significant (p = 0.824). Serum 25(OH)D levels were significantly correlated with age but inversely correlated with Sequential Organ Failure Assessment (SOFA) score, selenium, triglycerides, and C-reactive protein levels. There was no significant difference in mortality rates between the group with a vitamin D injection and the group without a vitamin D injection (14.6% vs. 16.9%, p = 0.074). Vitamin D deficiency was common in surgical ICU patients; however, vitamin D levels were higher in older patients. In conclusion, vitamin D deficiency was inversely associated with the SOFA severity score (correlation coefficient -0.165, p = 0.024) but was not associated with the length of hospital or ICU stay and mortality.
Asunto(s)
Enfermedad Crítica , Deficiencia de Vitamina D , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Hospitales , Humanos , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Estudios Retrospectivos , Vitamina D , Deficiencia de Vitamina D/epidemiología , Adulto JovenRESUMEN
PARP inhibitors are the first clinically approved drugs that were developed based on synthetic lethality. PARP inhibitors have shown promising outcomes since their clinical applications and have recently been approved as maintenance treatment for cancer patients with BRCA mutations. PARP inhibitors also exhibit positive results even in patients without homologous recombination (HR) deficiency. Therapeutic effects were successfully achieved; however, the development of resistance was unavoidable. Approximately 40-70% of patients are likely to develop resistance. Here, we describe the mechanisms of action of PARP inhibitors, the causes of resistance, and the various efforts to overcome resistance. Particularly, we determined the survival probability of cancer patients according to the expression patterns of genes associated with HR restoration, which are critical for the development of PARP inhibitor resistance. Furthermore, we discuss the innovative attempts to degrade PARP proteins by chemically modifying PARP inhibitors. These efforts would enhance the efficacy of PARP inhibitors or expand the scope of their usage.
Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino , Humanos , Mutación , Neoplasias Ováricas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutaciones Letales SintéticasRESUMEN
Hemp (Cannabis sativa L.) is used for medicinal purposes owing to its anti-inflammatory and antioxidant activities. We evaluated the protective effect of nanovesicles isolated from hemp plant parts (root, seed, hemp sprout, and leaf) in dextran sulfate sodium (DSS)-induced colitis in mice. The particle sizes of root-derived nanovesicles (RNVs), seed-derived nanovesicles (SNVs), hemp sprout-derived nanovesicles (HSNVs), and leaf-derived nanovesicles (LNVs) were within the range of 100-200 nm as measured by nanoparticle tracking analysis. Acute colitis was induced in C57BL/N mice by 5% DSS in water provided for 7 days. RNVs were administered orally once a day, leading to the recovery of both the small intestine and colon lengths. RNVs, SNVs, and HSNVs restored the tight (ZO-1, claudin-4, occludin) and adherent junctions (E-cadherin and α-tubulin) in DSS-induced small intestine and colon injury. Additionally, RNVs markedly reduced NF-κB activation and oxidative stress proteins in DSS-induced small intestine and colon injury. Tight junction protein expression and epithelial cell permeability were elevated in RNV-, SNV-, and HSNV-treated T84 colon cells exposed to 2% DSS. Interestedly, RNVs, SNVs, HSNVs, and LNVs reduced ALT activity and liver regeneration marker proteins in DSS-induced liver injury. These results showed for the first time that hemp-derived nanovesicles (HNVs) exhibited a protective effect on DSS-induced gut leaky and liver injury through the gut-liver axis by inhibiting oxidative stress marker proteins.
Asunto(s)
Cannabis , Colitis , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Sulfatos , Uniones Estrechas/metabolismoRESUMEN
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Asunto(s)
Histona Demetilasas/genética , Homeostasis/genética , Neoplasias/genética , Animales , Diferenciación Celular/genética , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas/inmunología , Histona Demetilasas/metabolismo , Homeostasis/inmunología , Humanos , Hipoxia/enzimología , Hipoxia/genética , Hipoxia/inmunología , Ratones , Neoplasias/enzimología , Neoplasias/inmunología , Células Madre Neoplásicas/fisiología , Escape del Tumor/genéticaRESUMEN
Janus tyrosine kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway is essential for modulating cellular development, differentiation, and homeostasis. Thus, dysregulation of JAK2-STAT3 signaling pathway is frequently associated with human malignancies. Here, we provide evidence that lysine-specific demethylase 3A (KDM3A) functions as an essential epigenetic enzyme for the activation of JAK2-STAT3 signaling pathway. KDM3A is tyrosine-phosphorylated by JAK2 in the nucleus and functions as a STAT3-dependent transcriptional coactivator. JAK2-KDM3A signaling cascade induced by IL-6 leads to alteration of histone H3K9 methylation as a predominant epigenetic event, thereby providing the functional and mechanistic link between activation of JAK2-STAT3 signaling pathway and its epigenetic control. Together, our findings demonstrate that inhibition of KDM3A phosphorylation could be a potent therapeutic strategy to control oncogenic effect of JAK2-STAT3 signaling pathway.
Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Epigénesis Genética , Células HEK293/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Activación TranscripcionalRESUMEN
Segregation of aliovalent dopant cations is a common degradation pathway on perovskite oxide surfaces in energy conversion and catalysis applications. Here we focus on resolving quantitatively how dopant segregation is affected by oxygen chemical potential, which varies over a wide range in electrochemical and thermochemical energy conversion reactions. We employ electrochemical polarization to tune the oxygen chemical potential over many orders of magnitude. Altering the effective oxygen chemical potential causes the oxygen nonstoichiometry to change in the electrode. This then influences the mechanisms underlying the segregation of aliovalent dopants. These mechanisms are (i) the formation of oxygen vacancies that couples to the electrostatic energy of the dopant in the perovskite lattice and (ii) the elastic energy of the dopant due to cation size mismatch, which also promotes the reaction of the dopant with O2 from the gas phase. The present study resolves these two contributions over a wide range of effective oxygen pressures. Ca-, Sr-, and Ba-doped LaMnO3 are selected as model systems, where the dopants have the same charge but different ionic sizes. We found that there is a transition between the electrostatically and elastically dominated segregation regimes, and the transition shifted to a lower oxygen pressure with increasing cation size. This behavior is consistent with the results of our ab initio thermodynamics calculations. The present study provides quantitative insights into how the elastic energy and the electrostatic energy determine the extent of segregation for a given overpotential and atmosphere relevant to the operating conditions of perovskite oxides in energy conversion applications.
RESUMEN
Conventional graphene oxide (GO)-based gas membranes, having a narrow pore-size range of less than 0.3 nm, exhibit limited gas molecular permeability because of the kinetic diameters of most volatile organic and sulfur compound (VOCs/VSCs) molecules being larger than 0.3 nm. Here, we employ GO nanosheets (NSs) with a tunable pore-size distribution as a molecular sieving layer on two-dimensional (2D) metal oxide NSs-based gas sensors, i.e., PdO-sensitized WO3 NSs to boost selectivity toward specific gas species. The pore size, surface area, and pore density of GO NSs were simply manipulated by controlling H2O2 concentration. In addition, the pore size-tuned GO NSs were coated on cellulose filtering paper as a free-standing nanoporous membrane. Holey GO membrane showed a highly selective H2S permeability characteristic, exhibiting superior cross-selectivity to CH3COCH3 (0.46 nm), C2H5OH (0.45 nm), and C7H8 (0.59 nm) with larger kinetic diameters compared with H2S (0.36 nm). Such pore-size-tuned GO nanoporous layer is scalable and robust, highlighting a great promise for designing low cost and highly efficient gas-permeable membrane for outstanding selective gas sensing platform.