Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 20(1): 128-135, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36352823

RESUMEN

Asymmetric small interfering RNAs (asiRNAs) that mediate RNA interference have been investigated for therapeutic use in various tissues, including skin tissue. Androgenetic alopecia (AGA) is caused by a combination of genetic factors, resulting in sensitivity to dihydrotestosterone (DHT), which binds to the androgen receptor (AR) to mediate a series of biomolecular changes leading to hair loss. This study aimed to evaluate the therapeutic potential of a cell-penetrating, AR-targeting asiRNA (cp-asiAR) for AGA treatment, which was designed to silence the AR gene. AGA mouse models were developed by stimulation with DHT, and ex vivo human scalp tissues were also used for analysis. Cp-asiAR-mediated changes in mRNA expression and protein levels of AR were assessed along with the examination of phenotypic improvements in mouse model of AGA. We also assessed downstream signaling associated with AR in primary human dermal papilla (DP) cells. Several cp-asiARs were screened for selecting the optimal sequence of AR using cell lines in vitro. A cholesterol-conjugated, chemically modified cp-asiAR candidate was optimized under passive uptake conditions in vitro. Intradermal cp-asiAR injection efficiently reduced mRNA and protein levels corresponding to AR in mouse models. Moreover, cp-asiAR injection promoted hair growth in mouse models with DHT-induced AGA. In ex vivo human hair follicle culture, the proportion of telogen hair decreased, and the mean hair bulb diameter increased in the cp-asiAR-treated group. In isolated primary human DP cells, AR expression was effectively downregulated by cp-asiAR. Furthermore, cp-asiAR attenuated DHT-mediated increases in interleukin-6, transforming growth factor-ß1, and dickkopf-1 levels. No significant toxicity was observed in DP cells after cp-asiAR treatment. Cp-asiAR treatment showed effective downregulation of AR expression and prevention of DHT-mediated alterations in the hair cycle and hair diameter, indicating its potential as a novel therapeutic option for AGA.


Asunto(s)
Alopecia , Receptores Androgénicos , Ratones , Animales , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , ARN Interferente Pequeño/metabolismo , Alopecia/tratamiento farmacológico , Alopecia/genética , Cabello/metabolismo , Folículo Piloso , Modelos Animales de Enfermedad , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
FASEB J ; 33(3): 4341-4354, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30592630

RESUMEN

Fibrosis is characterized by the increased accumulation of extracellular matrix (ECM), which drives abnormal cell proliferation and progressive organ dysfunction in many inflammatory and metabolic diseases. Studies have shown that halofuginone, a racemic halogenated derivative, inhibits glutamyl-prolyl-transfer RNA-synthetase (EPRS)-mediated fibrosis. However, the mechanism by which this occurs is unclear. We explored the mechanistic aspects of how EPRS could develop liver fibrotic phenotypes in cells and animal models. Treatment with TGF-ß1 up-regulated fibronectin and collagen I levels in LX2 hepatic stellate cells. This effect was inhibited in prolyl-transfer RNA synthetase (PRS)-suppressed LX2 cells. Using the promoter luciferase assay, TGF-ß1-mediated collagen I, α1 chain transcription and γ2 basal laminin transcription in LX2 cells were down-regulated by EPRS suppression, suggesting that EPRS may play roles in ECM production at transcriptional levels. Furthermore, signal transducer and activator of transcription (STAT) signaling activation was involved in the effects of TGF-ß1 on ECM expression in a PRS-dependent manner. This was mediated via a protein-protein complex formation consisting of TGF-ß1 receptor, EPRS, Janus kinases, and STAT6. Additionally, ECM expression in fibrotic livers overlapped with EPRS expression along fibrotic septa regions and was positively correlated with STAT6 activation in carbon tetrachloride-treated mice. This was less obvious in livers of Eprs-/+ mice. These findings suggest that, during fibrosis development, EPRS plays roles in nontranslational processes of ECM expression via intracellular signaling regulation upon TGF-ß1 stimulation.-Song, D.-G., Kim, D., Jung, J. W., Nam, S. H., Kim, J. E., Kim, H.-J., Kim, J. H., Lee, S.-J., Pan, C.-H., Kim, S., Lee, J. W. Glutamyl-prolyl-tRNA synthetase induces fibrotic extracellular matrix via both transcriptional and translational mechanisms.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Matriz Extracelular/metabolismo , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Aminoacil-ARNt Sintetasas/genética , Animales , Línea Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/genética , Matriz Extracelular/genética , Fibrosis/genética , Fibrosis/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/genética
3.
Proc Natl Acad Sci U S A ; 111(42): 15084-9, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288775

RESUMEN

In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Arginino-ARNt Ligasa/química , Citocinas/química , Proteínas de Neoplasias/química , Proteínas de Unión al ARN/química , Sitios de Unión , Cromatografía en Gel , Dicroismo Circular , Cristalografía por Rayos X , Escherichia coli/metabolismo , Glutatión Transferasa/química , Humanos , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis , Mutación , Biosíntesis de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación
4.
Nat Chem Biol ; 10(1): 29-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24212136

RESUMEN

Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.


Asunto(s)
Lisina-ARNt Ligasa/metabolismo , Metástasis de la Neoplasia , Receptores de Laminina/metabolismo , Membrana Celular/metabolismo , Lisina-ARNt Ligasa/antagonistas & inhibidores , Transporte de Proteínas , Receptores de Laminina/antagonistas & inhibidores
5.
Top Curr Chem ; 344: 207-45, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23818134

RESUMEN

Although aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multi-functional proteins (AIMPs) have long been recognized as housekeeping proteins, evidence indicating that they play a key role in regulating cancer is now accumulating. In this chapter we will review the conventional and non-conventional functions of ARSs and AIMPs with respect to carcinogenesis. First, we will address how ARSs and AIMPs are altered in terms of expression, mutation, splicing, and post-translational modifications. Second, the molecular mechanisms for ARSs' and AIMPs' involvement in the initiation, maintenance, and progress of carcinogenesis will be covered. Finally, we will introduce the development of therapeutic approaches that target ARSs and AIMPs with the goal of treating cancer.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Neoplasias/enzimología , Aminoacil-ARNt Sintetasas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/terapia , Procesamiento Proteico-Postraduccional
6.
Biochem J ; 454(3): 411-6, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23815603

RESUMEN

AIMP2 (aminoacyl-tRNA synthetase-interacting multifunctional protein 2) is a potent tumour suppressor that induces apoptosis in response to various oncogenic signals. AIMP2-DX2, an exon2-deleted splicing variant of AIMP2, is up-regulated in lung cancer and competitively suppresses the pro-apoptotic activity of AIMP2, resulting in tumorigenesis. In the present study we report that BC-DXI01, a synthetic compound, specifically reduces the cellular levels of AIMP2-DX2 through selective degradation of the AIMP2-DX2 mRNA transcript. We found that BC-DXI01-mediated cell death positively correlates with AIMP2-DX2 expression in the lung cancer cell lines tested. Administration of BC-DXI01 in a AIMP2-DX2-driven tumour xenograft mice model led to reduced tumour sizes and volumes of up to 60% in comparison with vehicle-treated mice group, consistent with decreases in AIMP2-DX2 transcript and protein levels. Taken together, our findings suggest that tumorigenic activity of AIMP2-DX2 can be controlled by the small chemical BC-DXI01, which can selectively suppress the AIMP2-DX2 mRNA transcript.


Asunto(s)
Anilidas/farmacología , Antineoplásicos/farmacología , Proteínas Portadoras/metabolismo , Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , para-Aminobenzoatos/farmacología , Animales , Apoptosis , Proteínas Portadoras/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Nucleares , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inducción de Remisión , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Neurosci ; 31(6): 2167-79, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307253

RESUMEN

The cerebellum receives its input from multiple precerebellar nuclei located in the brainstem and sends processed information to other brain structures via the deep cerebellar neurons. Guidance molecules that regulate the complex migrations of precerebellar neurons and the initial guidance of their leading processes have been identified. However, the molecules necessary for dorsal guidance of precerebellar axons to the developing cerebellum or for guidance of decussating axons of the deep nuclei are not known. To determine whether Unc5c plays a role in the dorsal guidance of precerebellar and deep cerebellar axons, we studied axonal trajectories of these neurons in Unc5c(-/-) mice. Our results show that Unc5c is expressed broadly in the precerebellar and deep cerebellar neurons. Unc5c deletion disrupted long-range dorsal guidance of inferior olivary and pontine axons after crossing the midline. In addition, dorsal guidance of the axons from the medial deep cerebellar and external cuneate neurons was affected in Unc5c(-/-) mice, as were anterior migrations of pontine neurons. Coincident with the guidance defects of their axons, degeneration of neurons in the external cuneate nucleus and subdivisions of the inferior olivary nucleus was observed in Unc5c(-/-) mice. Lastly, transgenic expression of Unc5c in deep neurons and pontine neurons by the Atoh1 promoter rescued defects of the medial deep cerebellar and pontine axons observed in Unc5c(-/-) embryos, demonstrating that Unc5c acts cell autonomously in the guidance of these axons. Our results suggest that Unc5c plays a broad role in dorsal guidance of axons in the developing hindbrain.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/citología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Rombencéfalo , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Recuento de Células/métodos , Movimiento Celular/genética , Cerebelo/anomalías , Cerebelo/citología , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Netrina , Vías Nerviosas/anomalías , Receptores de Factor de Crecimiento Nervioso/deficiencia , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo
8.
Nat Neurosci ; 11(4): 440-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18327254

RESUMEN

During their migration, cerebellar granule cells switch from a tangential to a radial mode of migration. We have previously demonstrated that this involves the transmembrane semaphorin Sema6A. We show here that plexin-A2 is the receptor that controls Sema6A function in migrating granule cells. In plexin-A2-deficient (Plxna2(-/-)) mice, which were generated by homologous recombination, many granule cells remained in the molecular layer, as we saw in Sema6a mutants. A similar phenotype was observed in mutant mice that were generated by mutagenesis with N-ethyl-N-nitrosourea and had a single amino-acid substitution in the semaphorin domain of plexin-A2. We found that this mutation abolished the ability of Sema6A to bind to plexin-A2. Mouse chimera studies further suggested that plexin-A2 acts in a cell-autonomous manner. We also provide genetic evidence for a ligand-receptor relationship between Sema6A and plexin-A2 in this system. Using time-lapse video microscopy, we found that centrosome-nucleus coupling and coordinated motility were strongly perturbed in Sema6a(-/-) and Plxna2(-/-) granule cells. This suggests that semaphorin-plexin signaling modulates cell migration by controlling centrosome positioning.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Cerebelo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Semaforinas/genética
9.
Nat Commun ; 13(1): 1169, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246514

RESUMEN

Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/ß-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression. Loss of Unc5B decreases BBB Wnt/ß-catenin signaling, and ß-catenin overexpression rescues Unc5B mutant BBB defects. Mechanistically, the Unc5B ligand Netrin-1 enhances Unc5B interaction with the Wnt co-receptor LRP6, induces its phosphorylation and activates Wnt/ß-catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin-1 binding to Unc5B causes a transient BBB breakdown and disruption of Wnt signaling, followed by neurovascular barrier resealing. These data identify Netrin-1-Unc5B signaling as a ligand-receptor pathway that regulates BBB integrity, with implications for CNS diseases.


Asunto(s)
Barrera Hematoencefálica , Receptores de Netrina , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Ligandos , Ratones , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
10.
Nat Commun ; 13(1): 2572, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546148

RESUMEN

Recent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation. Then, AIMP2-DX2 competitively blocks the access of Smurf2 (SMAD Ubiquitination Regulatory Factor 2) to KRAS, thus preventing ubiquitin-mediated degradation. Moreover, AIMP2-DX2 levels are positively correlated with KRAS levels in colon and lung cancer cell lines and tissues. We also identified a small molecule that specifically bound to the KRAS-binding region of AIMP2-DX2 and inhibited the interaction between these two factors. Treatment with this compound reduces the cellular levels of KRAS, leading to the suppression of KRAS-dependent cancer cell growth in vitro and in vivo. These results suggest the interface of AIMP2-DX2 and KRAS as a route to control KRAS-driven cancers.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Transformación Celular Neoplásica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Support Care Cancer ; 19(2): 297-301, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20213238

RESUMEN

BACKGROUND: End-of-dose failure is commonly observed as therapeutic levels of sustained-release opioids fall. However, little is known about using these medications for cancer pain control. To determine the dosing frequency of sustained-release opioids (morphine, oxycodone, and transdermal fentanyl) and the prevalence of end-of-dose failure in clinical practice, a patient-reported survey was performed. METHODS: A multicenter survey was conducted in 56 hospitals in Korea between June and November 2008. RESULTS: The study enrolled 1,097 cancer outpatients who were prescribed oral sustained-release opioids (morphine or oxycodone) or transdermal fentanyl. Of the oral sustained-release opioid patients, 67.0% took oral sustained-release oral opioids twice daily, while 26.2% took them more than twice daily. Of the transdermal fentanyl patients, 88.8% wore the patch for 72 h. Of the enrolled patients, 48.3% experienced worsening pain just before the next sustained-release opioid dose, and 36.8% of these patients took medication earlier than the prescribed dosing schedule. Patients felt that oral sustained-release opioids gave adequate pain control lasting an average of 9.6 h, versus an average of 62.9 h for transdermal fentanyl. CONCLUSION: This survey demonstrated that sustained-release opioids are used by patients in a manner that is inconsistent with standard recommendations. End-of-dose failure is suggested to explain increased dosing frequency, and patients reported that adequate pain relief lasted for less time than was stated in the manufacturers' prescription recommendation.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Dolor/tratamiento farmacológico , Dolor/etiología , Adulto , Anciano , Anciano de 80 o más Años , Preparaciones de Acción Retardada , Esquema de Medicación , Femenino , Fentanilo/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Morfina/administración & dosificación , Oxicodona/administración & dosificación , Dimensión del Dolor/efectos de los fármacos , República de Corea , Factores de Tiempo , Adulto Joven
12.
Sci Transl Med ; 12(569)2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177178

RESUMEN

Lewy bodies are pathological protein inclusions present in the brain of patients with Parkinson's disease (PD). These inclusions consist mainly of α-synuclein with associated proteins, such as parkin and its substrate aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2). Although AIMP2 has been suggested to be toxic to dopamine neurons, its roles in α-synuclein aggregation and PD pathogenesis are largely unknown. Here, we found that AIMP2 exhibits a self-aggregating property. The AIMP2 aggregate serves as a seed to increase α-synuclein aggregation via specific and direct binding to the α-synuclein monomer. The coexpression of AIMP2 and α-synuclein in cell cultures and in vivo resulted in the rapid formation of α-synuclein aggregates with a corresponding increase in toxicity. Moreover, accumulated AIMP2 in mouse brain was largely redistributed to insoluble fractions, correlating with the α-synuclein pathology. Last, we found that α-synuclein preformed fibril (PFF) seeding, adult Parkin deletion, or oxidative stress triggered a redistribution of both AIMP2 and α-synuclein into insoluble fraction in cells and in vivo. Supporting the pathogenic role of AIMP2, AIMP2 knockdown ameliorated the α-synuclein aggregation and dopaminergic cell death in response to PFF or 6-hydroxydopamine treatment. Together, our results suggest that AIMP2 plays a pathological role in the aggregation of α-synuclein in mice. Because AIMP2 insolubility and coaggregation with α-synuclein have been seen in the PD Lewy body, targeting pathologic AIMP2 aggregation might be useful as a therapeutic strategy for neurodegenerative α-synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Cuerpos de Lewy/metabolismo , Ratones , Proteínas Nucleares , alfa-Sinucleína/metabolismo
13.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461342

RESUMEN

BACKGROUND: The generation of antigen-specific cytotoxic T lymphocyte (CTL) responses is required for successful cancer vaccine therapy. In this regard, ligands of Toll-like receptors (TLRs) have been suggested to activate adaptive immune responses by modulating the function of antigen-presenting cells (APCs). Despite their therapeutic potential, the development of TLR ligands for immunotherapy is often hampered due to rapid systemic toxicity. Regarding the safety concerns of currently available TLR ligands, finding a new TLR agonist with potent efficacy and safety is needed. METHODS: A unique structural domain (UNE-C1) was identified as a novel TLR2/6 in the catalytic region of human cysteinyl-tRNA synthetase 1 (CARS1) using comprehensive approaches, including RNA sequencing, the human embryonic kidney (HEK)-TLR Blue system, pull-down, and ELISA. The potency of its immunoadjuvant properties was analyzed by assessing antigen-specific antibody and CTL responses. In addition, the efficacy of tumor growth inhibition and the presence of the tumor-infiltrating leukocytes were evaluated using E.G7-OVA and TC-1 mouse models. The combined effect of UNE-C1 with an immune checkpoint inhibitor, anti-CTLA-4 antibody, was also evaluated in vivo. The safety of UNE-C1 immunization was determined by monitoring splenomegaly and cytokine production in the blood. RESULTS: Here, we report that CARS1 can be secreted from cancer cells to activate immune responses via specific interactions with TLR2/6 of APCs. A unique domain (UNE-C1) inserted into the catalytic region of CARS1 was determined to activate dendritic cells, leading to the stimulation of robust humoral and cellular immune responses in vivo. UNE-C1 also showed synergistic efficacy with cancer antigens and checkpoint inhibitors against different cancer models in vivo. Further, the safety assessment of UNE-C1 showed lower systemic cytokine levels than other known TLR agonists. CONCLUSIONS: We identified the endogenous TLR2/6 activating domain from human cysteinyl-tRNA synthetase CARS1. This novel TLR2/6 ligand showed potent immune-stimulating activity with little toxicity. Thus, the UNE-C1 domain can be developed as an effective immunoadjuvant with checkpoint inhibitors or cancer antigens to boost antitumor immunity.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Inmunidad Celular/inmunología , Inmunoterapia/métodos , Neoplasias Experimentales/terapia , Receptor Toll-Like 2/inmunología , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/inmunología , Animales , Vacunas contra el Cáncer/inmunología , Dominio Catalítico , Células Dendríticas/inmunología , Femenino , Humanos , Inmunización , Ligandos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Linfocitos T Citotóxicos/inmunología , Receptor Toll-Like 2/química , Receptor Toll-Like 2/metabolismo
14.
Lab Anim Res ; 35: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31463221

RESUMEN

We examined the precision, accuracy, and capability of detecting changes of Dual-Energy X-ray Absorptiometry (DXA) for the measurements of total-body weight (TBW), total-body fat weight (TBFW), and total-body lean weight (TBLW) in an 8-week follow-up study of rats. Twenty male rats (4-week) were divided into 2 diet groups. For 8 weeks, we measured body composition (TBW, TBFW, TBLW) by DXA and TBW by an electronic scale once a week. In week 8, we measured body composition 5 times by DXA and TBFW by dissecting experiment (EXP) of euthanized rats (12-week). Total-body fat ratio (TBFR) was defined as TBFW/(TBFW+TBLW). The precision of DXA was evaluated by measuring the coefficient of variation (CV) and accuracy was evaluated by comparing DXA-derived data with EXP data. The capability of detecting changes of DXA in follow-up study was verified by analyzing the trend of DXA-derived values over the 8 weeks. For TBW, TBFW, TBLW of DXA, CVs were 0.02 ± 0.01, 0.10 ± 0.05, 0.03 ± 0.02 and errors were - 6.996 ± 3.429 (r = 0.999), + 14.729 ± 3.663 (r = 0.982), - 21.725 ± 4.223 (r = 0.991), respectively. Prediction models were [EXP TBW = - 31.767 + 1.085 (DXA TBW), R2 = 0.998, root mean square error (RMSE) = 1.842] and [EXP TBFR = - 0.056 + 1.177 (DXA TBFR), R2 = 0.948, RMSE = 0.007]. Over 8 weeks, DXA TBW and DXA TBLW steadily increased, DXA TBFW steadily increased followed by saturation or declination, difference of DXA TBFW between 2 diet groups steadily increased. In conclusion, our study verified that DXA (iNSiGHT VET DXA, OsteoSys, Korea) is accurate and precise enough to measure body composition of rats. Additionally, we confirmed the possibility that DXA could be used for the long-term follow-up studies.

15.
Nat Commun ; 10(1): 1357, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902983

RESUMEN

A fundamental question in biology is how vertebrates evolved and differ from invertebrates, and little is known about differences in the regulation of translation in the two systems. Herein, we identify a threonyl-tRNA synthetase (TRS)-mediated translation initiation machinery that specifically interacts with eIF4E homologous protein, and forms machinery that is structurally analogous to the eIF4F-mediated translation initiation machinery via the recruitment of other translation initiation components. Biochemical and RNA immunoprecipitation analyses coupled to sequencing suggest that this machinery emerged as a gain-of-function event in the vertebrate lineage, and it positively regulates the translation of mRNAs required for vertebrate development. Collectively, our findings demonstrate that TRS evolved to regulate vertebrate translation initiation via its dual role as a scaffold for the assembly of initiation components and as a selector of target mRNAs. This work highlights the functional significance of aminoacyl-tRNA synthetases in the emergence and control of higher order organisms.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Treonina-ARNt Ligasa/metabolismo , Secuencia de Aminoácidos , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Factor 4E Eucariótico de Iniciación , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos C57BL , Unión Proteica , Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie , Treonina-ARNt Ligasa/química , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo , Pez Cebra
16.
Sci Rep ; 8(1): 15025, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30302025

RESUMEN

Genomes are mostly protected from constant DNA-damaging threats, either internal or external, which ultimately sustain the organism. Herein, we report that AIMP3, a previously demonstrated tumour suppressor, plays an essential role in maintaining genome integrity in adult mice. Upon induction of the temporal systemic deletion of AIMP3 by tamoxifen in adult mice, the animals developed an acute radiation syndrome-like phenotype, typified by scleroderma, hypotrophy of haematopoietic cells and organs, and intestinal failure. Induction of γH2AX, an early marker of DNA double-strand breaks, was observed in the spleen, intestine, and the highly replicating embryonic cortex. In addition, sub-lethal irradiation of AIMP3 mKO mice dramatically affected organ damage and survival. Using isolated MEFs from conditional KO mice or AIMP3 knockdown cells, we confirmed the presence of spontaneously occurring DNA double-strand breaks by COMET assay and γH2AX induction. Furthermore, γH2AX removal was delayed, and homologous DNA repair activity was significantly reduced. Reduction of RPA foci formation and subsequent Rad51 foci formation probably underlie the significant reduction in homologous recombination activity in the absence of AIMP3. Together, our data demonstrate that AIMP3 plays a role in genome stability through the DNA repair process.


Asunto(s)
Síndrome de Radiación Aguda/genética , Histonas/genética , Factores de Elongación de Péptidos/genética , Recombinasa Rad51/genética , Síndrome de Radiación Aguda/patología , Animales , Ensayo Cometa , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Fibroblastos/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Recombinación Homóloga/efectos de la radiación , Humanos , Ratones , Ratones Noqueados , Fenotipo , Radiación , Radiación Ionizante , Proteínas Supresoras de Tumor/genética
17.
Front Pharmacol ; 9: 1337, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524284

RESUMEN

Idiopathic pulmonary fibrosis (IPF), a chronic disease of unknown cause, is characterized by abnormal accumulation of extracellular matrix (ECM) in fibrotic foci in the lung. Previous studies have shown that the transforming growth factor ß1 (TGFß1) and signal transducers and activators of transcription (STAT) pathways play roles in IPF pathogenesis. Glutamyl-prolyl-tRNA-synthetase (EPRS) has been identified as a target for anti-fibrosis therapy, but the link between EPRS and TGFß1-mediated IPF pathogenesis remains unknown. Here, we studied the role of EPRS in the development of fibrotic phenotypes in A549 alveolar epithelial cells and bleomycin-treated animal models. We found that EPRS knockdown inhibited the TGFß1-mediated upregulation of fibronectin and collagen I and the mesenchymal proteins α-smooth muscle actin (α-SMA) and snail 1. TGFß1-mediated transcription of collagen I-α1 and laminin γ2 in A549 cells was also down-regulated by EPRS suppression, indicating that EPRS is required for ECM protein transcriptions. Activation of STAT signaling in TGFß1-induced ECM expression was dependent on EPRS. TGFß1 treatment resulted in EPRS-dependent in vitro formation of a multi-protein complex consisting of the TGFß1 receptor, EPRS, Janus tyrosine kinases (JAKs), and STATs. In vivo lung tissue from bleomycin-treated mice showed EPRS-dependent STAT6 phosphorylation and ECM production. Our results suggest that epithelial EPRS regulates the expression of mesenchymal markers and ECM proteins via the TGFß1/STAT signaling pathway. Therefore, epithelial EPRS can be used as a potential target to develop anti-IPF treatments.

18.
Exp Mol Med ; 50(1): e424, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29328069

RESUMEN

Mucin1 (MUC1), a heterodimeric oncoprotein, containing tandem repeat structures with a high proportion of threonine, is aberrantly overexpressed in many human cancers including pancreatic cancer. Since the overall survival rate of pancreatic cancer patients has remained low for several decades, novel therapeutic approaches are highly needed. Intestinal mucin has been known to be affected by dietary threonine supply since de novo synthesis of mucin proteins is sensitive to luminal threonine concentration. However, it is unknown whether biosynthesis of MUC1 is regulated by threonine in human cancers. In this study, data provided suggests that threonine starvation reduces the level of MUC1 and inhibits the migration of MUC1-expressing pancreatic cancer cells. Interestingly, knockdown of threonyl-tRNA synthetase (TRS), an enzyme that catalyzes the ligation of threonine to its cognate tRNA, also suppresses MUC1 levels but not mRNA levels. The inhibitors of TRS decrease the level of MUC1 protein and prohibit the migration of MUC1-expressing pancreatic cancer cells. In addition, a positive correlation between TRS and MUC1 levels is observed in human pancreatic cancer cells. Concurrent with these results, the bioinformatics data indicate that co-expression of both TRS and MUC1 is correlated with the poor survival of pancreatic cancer patients. Taken together, these findings suggest a role for TRS in controlling MUC1-mediated cancer cell migration and provide insight into targeting TRS as a novel therapeutic approach to pancreatic cancer treatment.


Asunto(s)
Mucina-1/biosíntesis , Neoplasias Pancreáticas/patología , Treonina-ARNt Ligasa/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Alcoholes Grasos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Mucina-1/metabolismo , Neoplasias Pancreáticas/mortalidad , Análisis de Supervivencia , Treonina/metabolismo , Treonina/farmacología , Treonina-ARNt Ligasa/antagonistas & inhibidores , Treonina-ARNt Ligasa/genética , Análisis de Matrices Tisulares
19.
Cell Death Dis ; 9(10): 972, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250065

RESUMEN

Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a component of the multi-aminoacyl-tRNA synthetase complex and is involved in diverse cellular processes. Given that AIMP3 deficiency causes early embryonic lethality in mice, AIMP3 is expected to play a critical role in early mouse development. To elucidate a functional role of AIMP3 in early mouse development, we induced AIMP3 depletion in mouse embryonic stem cells (mESCs) derived from blastocysts of AIMP3f/f; CreERT2 mice. In the present study, AIMP3 depletion resulted in loss of self-renewal and ability to differentiate to three germ layers in mESCs. AIMP3 depletion led to accumulation of DNA damage by blocking double-strand break repair, in particular homologous recombination. Through microarray analysis, the p53 signaling pathway was identified as being activated in AIMP3-depleted mESCs. Knockdown of p53 rescued loss of stem cell characteristics by AIMP3 depletion in mESCs. These results imply that AIMP3 depletion in mESCs leads to accumulation of DNA damage and p53 transactivation, resulting in loss of stemness. We propose that AIMP3 is involved in maintenance of genome stability and stemness in mESCs.


Asunto(s)
Inestabilidad Genómica/fisiología , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Inestabilidad Genómica/genética , Ratones , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética
20.
J Clin Invest ; 128(11): 5034-5055, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188867

RESUMEN

Lysyl-tRNA synthetase (KRS) functions canonically in cytosolic translational processes. However, KRS is highly expressed in colon cancer, and localizes to distinct cellular compartments upon phosphorylations (i.e., the plasma membranes after T52 phosphorylation and the nucleus after S207 phosphorylation), leading to probably alternative noncanonical functions. It is unknown how other subcellular KRSs crosstalk with environmental cues during cancer progression. Here, we demonstrate that the KRS-dependent metastatic behavior of colon cancer spheroids within 3D gels requires communication between cellular molecules and extracellular soluble factors and neighboring cells. Membranous KRS and nuclear KRS were found to participate in invasive cell dissemination of colon cancer spheroids in 3D gels. Cancer spheroids secreted GAS6 via a KRS-dependent mechanism and caused the M2 polarization of macrophages, which activated the neighboring cells via secretion of FGF2/GROα/M-CSF to promote cancer dissemination under environmental remodeling via fibroblast-mediated laminin production. Analyses of tissues from clinical colon cancer patients and Krs-/+ animal models for cancer metastasis supported the roles of KRS, GAS6, and M2 macrophages in KRS-dependent positive feedback between tumors and environmental factors. Altogether, KRS in colon cancer cells remodels the microenvironment to promote metastasis, which can thus be therapeutically targeted at these bidirectional KRS-dependent communications of cancer spheroids with environmental cues.


Asunto(s)
Neoplasias del Colon/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Lisina-ARNt Ligasa/biosíntesis , Macrófagos/enzimología , Proteínas de Neoplasias/biosíntesis , Esferoides Celulares/enzimología , Microambiente Tumoral , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisina-ARNt Ligasa/genética , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA