Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 28(25): e202200149, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35333409

RESUMEN

We describe the nonaqueous redox-matched flow battery (RMFB), where charge is stored on redox-active moieties covalently tethered to non-circulating, insoluble polymer beads and charge is transferred between the electrodes and the beads via soluble mediators with redox potentials matched to the active moieties on the beads. The RMFB reported herein uses ferrocene and viologen derivatives bound to crosslinked polystyrene beads. Charge storage in the beads leads to a high (approximately 1.0-1.7 M) effective concentration of active material in the reservoirs while preventing crossover of that material. The relatively low concentration of soluble mediators (15 mM) eliminates the need for high-solubility molecules to create high energy density batteries. Nernstian redox exchange between the beads and redox-matched mediators was fast relative to the cycle time of the RMFB. This approach is generalizable to many different redox-active moieties via attachment to the versatile Merrifield resin.

2.
Nat Chem ; 15(2): 222-229, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36376389

RESUMEN

New approaches are needed to both reduce and reuse plastic waste. In this context, poly(vinyl chloride) (PVC) is an appealing target as it is the least recycled high-production-volume polymer due to its facile release of plasticizers and corrosive HCl gas. Herein, these limitations become advantageous in a paired-electrolysis reaction in which HCl is intentionally generated from PVC to chlorinate arenes in an air- and moisture-tolerant process that is mediated by the plasticizer. The reaction proceeds efficiently with other plastic waste present and a commercial plasticized PVC product (laboratory tubing) can be used directly. A simplified life-cycle assessment reveals that using PVC waste as the chlorine source in the paired-electrolysis reaction has a lower global warming potential than HCl. Overall, this method should inspire other strategies for repurposing waste PVC and related polymers using electrosynthetic reactions, including those that take advantage of existing polymer additives.

3.
Langmuir ; 27(22): 13854-60, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21955125

RESUMEN

We report a facile synthetic route for size-controlled preparation of gold nanoparticles. Nearly monodisperse gold nanoparticles with core diameters of 1-6 nm were obtained by reducing AuP(Phenyl)(3)Cl with tert-butylamine borane in the presence of dodecanethiol in the solvent mixture of benzene and CHCl(3). Mechanism studies have shown that the size control is achieved by the solvent-controlled nucleation in which the nuclei concentration increases with increasing the fraction of CHCl(3), leading to smaller particles. It was also found that, following the solvent-controlled nucleation, particle growth occurs via ligand replacement of PPh(3) on the nuclei by Au(I)thiolate generated by the digestive etching of small particles. This synthetic strategy was successfully demonstrated with other alkanethiols of different chain length with which size-controlled, monodisperse gold nanoparticles were prepared in remarkable yield without requiring any postsynthesis treatments.

4.
ACS Appl Mater Interfaces ; 8(2): 1067-72, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26735003

RESUMEN

Semiconductor-metal nanocomposites prepared with well-defined gold nanoclusters, such as Au25, Au144, and Au807, showed size-dependent photocatalytic activities for the reduction of nile blue and azobenzene. Whereas the photoreduction of nile blue was directly related with the charge separation and transfer rate from the photoexcited ZnO to gold nanoclusters, the photoreaction of azobenzene showed unexpected size effect with a clear threshold. Mechanistic investigations revealed that the photoreduction of azobenzene proceeded via a proton-coupled electron transfer process. The photocatalytic activity of the ZnO-Au nanocomposites was also dependent on the excitation intensity, demonstrating that the multielectron/multiproton process was controlled by the charge separation and transfer in the nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA