Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121664

RESUMEN

The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Ecotoxicol Environ Saf ; 204: 111056, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32763566

RESUMEN

Strontium (Sr) is an emerging environmental pollutant that has become a major global concern after the nuclear accident at the Fukushima Daiichi Nuclear Power Plant in 2011. Although many studies have demonstrated the harmful effects of Sr on plant growth and development at the physiological level, knowledge regarding how plants sense and respond to Sr stress at the molecular level is limited. Recent studies have suggested that microRNAs (miRNAs) function as key regulators of plant growth and development as well as in the responses of plants to environmental stresses, including salinity, drought, cold, nutrient starvation, and heavy metals. In this study, we examined the global expression profile of miRNAs under Sr stress using small RNA sequencing analysis in Arabidopsis to better understand the molecular basis of plant responses to Sr stress. To identify specific Sr-responsive miRNAs, we performed comparative miRNA expression profiling analysis using control, CaCl2-, and SrCl2-treated seedlings. Compared to the control treatment, the expressions of most miRNAs were considerably decreased in the Sr-treated seedlings. However, under Sr stress, the expressions of primary miRNAs (pri-miRNAs) and their target genes were significantly increased; the protein levels of HYPONASTIC LEAVES 1 (HYL1), one of the core components of the microprocessor complex, were strongly reduced despite the increased HYL1 mRNA expression. In addition, hyl1-2 mutant plants were shown to be more sensitive to Sr stress than wild-type plants. Collectively, our results strongly suggested that Sr stress may be associated with the disruption of miRNA biogenesis by reducing the protein level of HYL1, which is required to maintain proper growth and development for plants. Our findings further indicated that some miRNAs may play important roles in plant responses to Sr stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , MicroARNs/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Contaminantes del Suelo/toxicidad , Estroncio/toxicidad , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Estrés Oxidativo/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Procesamiento Postranscripcional del ARN
3.
BMC Genomics ; 20(1): 326, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035917

RESUMEN

BACKGROUND: Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. RESULTS: In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. CONCLUSION: This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Interacciones Huésped-Parásitos/genética , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Ascomicetos/patogenicidad , Sequías , Genoma de Planta , Hordeum/crecimiento & desarrollo , Oryza/genética , Filogenia , Proteínas de Plantas/clasificación , Plantones/microbiología , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/clasificación
4.
Mol Plant ; 14(4): 647-663, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524550

RESUMEN

The precise regulation of microRNA (miRNA) biogenesis is crucial for plant development, which requires core microprocessors and many fine tuners to coordinate their miRNA processing activity/specificity in fluctuating cellular environments. During de-etiolation, light triggers a dramatic accumulation of core microprocessors and primary miRNAs (pri-miRNAs) but decreases pri-miRNA processing activity, resulting in relatively constant miRNA levels. The mechanisms underlying these seemingly contradictory regulatory changes remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a light-stabilized suppressor of miRNA biogenesis. We found that FHA2 deficiency increased the level of mature miRNAs, accompanied by a reduction in pri-miRNAs and target mRNAs. Biochemical assays showed that FHA2 associates with the core microprocessors DCL1, HYL1, and SE, forming a complex to suppress their pri-miRNA processing activity. Further analyses revealed that FHA2 promotes HYL1 binding but inhibits the binding of DCL1-PAZ-RNase-RNA-binding domains (DCL1-PRR) to miRNAs, whereas FHA2 does not directly bind to these RNAs. Interestingly, we found that FHA2 protein is unstable in the dark but stabilized by light during de-etiolation. Consistently, disruption of FHA led to defects in light-triggered changes in miRNA expression and reduced the survival rate of de-etiolated seedlings after prolonged light deprivation. Collectively, these data suggest that FHA2 is a novel light-stabilized suppressor of miRNA biogenesis and plays a role in fine-tuning miRNA processing during de-etiolation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Luz , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética
5.
Mol Plant ; 13(3): 431-445, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678531

RESUMEN

The shift of dark-grown seedlings into light causes enormous transcriptome changes followed by a dramatic developmental transition. Here, we show that microRNA (miRNA) biogenesis also undergoes regulatory changes during de-etiolation. Etiolated seedlings maintain low levels of primary miRNAs (pri-miRNAs) and miRNA processing core proteins, such as Dicer-like 1, SERRATE, and HYPONASTIC LEAVES 1, whereas during de-etiolation both pri-miRNAs and the processing components accumulate to high levels. However, the levels of most miRNAs do not notably increase in response to light. To reconcile this inconsistency, we demonstrated that an unknown suppressor decreases miRNA-processing activity and light-induced SMALL RNA DEGRADING NUCLEASE 1 shortens the half-life of several miRNAs in de-etiolated seedlings. Taken together, these data suggest a novel mechanism, miRNA-biogenetic inconsistency, which accounts for the intricacy of miRNA biogenesis during de-etiolation. This mechanism is essential for the survival of de-etiolated seedlings after long-term skotomorphogenesis and their optimal adaptation to ever-changing light conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Luz , MicroARNs/biosíntesis , Plantones/fisiología , Plantones/efectos de la radiación , Arabidopsis/fisiología , Transcriptoma/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA