Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMB Rep ; 57(3): 149-154, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37817436

RESUMEN

The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].


Asunto(s)
Ingestión de Alimentos , Ghrelina , Ratones , Animales , Ghrelina/farmacología , Ingestión de Alimentos/fisiología , Clusterina/farmacología , Colecistoquinina/farmacología , Estómago , Conducta Alimentaria
2.
J Obes Metab Syndr ; 31(1): 81-85, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35301269

RESUMEN

Background: We aimed to build mouse models of small for gestational age (SGA), recapitulating failure of catch-up growth and dysregulated metabolic outcomes in adulthood. Methods: Pregnant C57BL/6 mice were given a protein-restricted diet (PRD; 6% kcal from protein) during pregnancy without (model 1) or with cross-fostering (model 2). Model 3 extended the PRD to the end of the lactation period. Model 4 changed to a 9% PRD without cross-fostering. Results: Model 1 yielded a reduced size of offspring with a poor survival rate. Model 2 improved survival but offspring showed early catch-up growth. Model 3 maintained a reduced size of offspring after weaning with a higher body mass index and blood glucose levels in adult stages. Model 4 increased the survival of the offspring while maintaining a reduced size and dysregulated glucose metabolism. Conclusion: Models 3 and 4 are suitable for studying SGA accompanying adulthood short stature and metabolic disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA