Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38676070

RESUMEN

Unsupervised anomaly detection in multivariate time series sensor data is a complex task with diverse applications in different domains such as livestock farming and agriculture (LF&A), the Internet of Things (IoT), and human activity recognition (HAR). Advanced machine learning techniques are necessary to detect multi-sensor time series data anomalies. The primary focus of this research is to develop state-of-the-art machine learning methods for detecting anomalies in multi-sensor data. Time series sensors frequently produce multi-sensor data with anomalies, which makes it difficult to establish standard patterns that can capture spatial and temporal correlations. Our innovative approach enables the accurate identification of normal, abnormal, and noisy patterns, thus minimizing the risk of misinterpreting models when dealing with mixed noisy data during training. This can potentially result in the model deriving incorrect conclusions. To address these challenges, we propose a novel approach called "TimeTector-Twin-Branch Shared LSTM Autoencoder" which incorporates several Multi-Head Attention mechanisms. Additionally, our system now incorporates the Twin-Branch method which facilitates the simultaneous execution of multiple tasks, such as data reconstruction and prediction error, allowing for efficient multi-task learning. We also compare our proposed model to several benchmark anomaly detection models using our dataset, and the results show less error (MSE, MAE, and RMSE) in reconstruction and higher accuracy scores (precision, recall, and F1) against the baseline models, demonstrating that our approach outperforms these existing models.


Asunto(s)
Ganado , Animales , Algoritmos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Agricultura/métodos
2.
Sensors (Basel) ; 23(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067875

RESUMEN

Pig husbandry constitutes a significant segment within the broader framework of livestock farming, with porcine well-being emerging as a paramount concern due to its direct implications on pig breeding and production. An easily observable proxy for assessing the health of pigs lies in their daily patterns of movement. The daily movement patterns of pigs can be used as an indicator of their health, in which more active pigs are usually healthier than those who are not active, providing farmers with knowledge of identifying pigs' health state before they become sick or their condition becomes life-threatening. However, the conventional means of estimating pig mobility largely rely on manual observations by farmers, which is impractical in the context of contemporary centralized and extensive pig farming operations. In response to these challenges, multi-object tracking and pig behavior methods are adopted to monitor pig health and welfare closely. Regrettably, these existing methods frequently fall short of providing precise and quantified measurements of movement distance, thereby yielding a rudimentary metric for assessing pig health. This paper proposes a novel approach that integrates optical flow and a multi-object tracking algorithm to more accurately gauge pig movement based on both qualitative and quantitative analyses of the shortcomings of solely relying on tracking algorithms. The optical flow records accurate movement between two consecutive frames and the multi-object tracking algorithm offers individual tracks for each pig. By combining optical flow and the tracking algorithm, our approach can accurately estimate each pig's movement. Moreover, the incorporation of optical flow affords the capacity to discern partial movements, such as instances where only the pig's head is in motion while the remainder of its body remains stationary. The experimental results show that the proposed method has superiority over the method of solely using tracking results, i.e., bounding boxes. The reason is that the movement calculated based on bounding boxes is easily affected by the size fluctuation while the optical flow data can avoid these drawbacks and even provide more fine-grained motion information. The virtues inherent in the proposed method culminate in the provision of more accurate and comprehensive information, thus enhancing the efficacy of decision-making and management processes within the realm of pig farming.


Asunto(s)
Flujo Optico , Porcinos , Animales , Movimiento/fisiología , Algoritmos , Movimiento (Física) , Granjas
3.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477650

RESUMEN

In this paper, we propose a complex neuro-memristive synapse that exhibits the physiological acts of synaptic potentiation and depression of the human-brain. Specifically, the proposed neuromorphic synapse efficiently imitates the synaptic plasticity, especially long-term potentiation (LTP) and depression (LTD), and short-term facilitation (STF) and depression (STD), phenomena of a biological synapse. Similar to biological synapse, the short- or long-term potentiation (STF and LTP) or depression (STD or LTD) of the memristive synapse are distinguished on the basis of time or repetition of input cycles. The proposed synapse is also designed to exhibit the effect of reuptake and neurotransmitters diffusion processes of a bio-synapse. In addition, it exhibits the distinct bio-realistic attributes, i.e., strong stimulation, exponentially decaying conductance trace of synapse, and voltage dependent synaptic responses, of a neuron. The neuro-memristive synapse is designed in SPICE and its bio-realistic functionalities are demonstrated via various simulations.


Asunto(s)
Plasticidad Neuronal , Sinapsis , Humanos , Potenciación a Largo Plazo , Neuronas
4.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965553

RESUMEN

Cell cytotoxicity assays, such as cell viability and lactate dehydrogenase (LDH) activity assays, play an important role in toxicological studies of pharmaceutical compounds. However, precise modeling for cytotoxicity studies is essential for successful drug discovery. The aim of our study was to develop a computational modeling that is capable of performing precise prediction, processing, and data representation of cell cytotoxicity. For this, we investigated protective effect of quercetin against various mycotoxins (MTXs), including citrinin (CTN), patulin (PAT), and zearalenol (ZEAR) in four different human cancer cell lines (HeLa, PC-3, Hep G2, and SK-N-MC) in vitro. In addition, the protective effect of quercetin (QCT) against various MTXs was verified via modeling of their nonlinear protective functions using artificial neural networks. The protective model of QCT is built precisely via learning of sparsely measured experimental data by the artificial neural networks (ANNs). The neuromodel revealed that QCT pretreatment at doses of 7.5 to 20 µg/mL significantly attenuated MTX-induced alteration of the cell viability and the LDH activity on HeLa, PC-3, Hep G2, and SK-N-MC cell lines. It has shown that the neuromodel can be used to predict the protective effect of QCT against MTX-induced cytotoxicity for the measurement of percentage (%) of inhibition, cell viability, and LDH activity of MTXs.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Micotoxinas/farmacología , Quercetina/farmacología , Citrinina/farmacología , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Células HeLa , Células Hep G2 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Células PC-3 , Patulina/farmacología , Zeranol/análogos & derivados , Zeranol/farmacología
5.
Sensors (Basel) ; 18(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320467

RESUMEN

This paper presents a vision sensor-based solution to the challenging problem of detecting and following trails in highly unstructured natural environments like forests, rural areas and mountains, using a combination of a deep neural network and dynamic programming. The deep neural network (DNN) concept has recently emerged as a very effective tool for processing vision sensor signals. A patch-based DNN is trained with supervised data to classify fixed-size image patches into "trail" and "non-trail" categories, and reshaped to a fully convolutional architecture to produce trail segmentation map for arbitrary-sized input images. As trail and non-trail patches do not exhibit clearly defined shapes or forms, the patch-based classifier is prone to misclassification, and produces sub-optimal trail segmentation maps. Dynamic programming is introduced to find an optimal trail on the sub-optimal DNN output map. Experimental results showing accurate trail detection for real-world trail datasets captured with a head mounted vision system are presented.

6.
Sensors (Basel) ; 16(8)2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27548186

RESUMEN

A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

7.
Sensors (Basel) ; 17(1)2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28025566

RESUMEN

A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems.

8.
Int J Mol Sci ; 17(9)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27649160

RESUMEN

The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.


Asunto(s)
Potenciales de Acción/fisiología , Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/fisiología , Animales , Apoptosis , Canales de Calcio/metabolismo , Caspasas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada
9.
Comput Biol Med ; 170: 108055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295480

RESUMEN

In the domain of medical image analysis, deep learning models are heralding a revolution, especially in detecting complex and nuanced features characteristic of diseases like tumors and cancers. However, the robustness and adaptability of these models across varied imaging conditions and magnifications remain a formidable challenge. This paper introduces the Fourier Adaptive Recognition System (FARS), a pioneering model primarily engineered to address adaptability in malarial parasite recognition. Yet, the foundational principles guiding FARS lend themselves seamlessly to broader applications, including tumor and cancer diagnostics. FARS capitalizes on the untapped potential of transitioning from bounding box labels to richer semantic segmentation labels, enabling a more refined examination of microscopy slides. With the integration of adversarial training and the Color Domain Aware Fourier Domain Adaptation (F2DA), the model ensures consistent feature extraction across diverse microscopy configurations. The further inclusion of category-dependent context attention amplifies FARS's cross-domain versatility. Evidenced by a substantial elevation in cross-magnification performance from 31.3% mAP to 55.19% mAP and a 15.68% boost in cross-domain adaptability, FARS positions itself as a significant advancement in malarial parasite recognition. Furthermore, the core methodologies of FARS can serve as a blueprint for enhancing precision in other realms of medical image analysis, especially in the complex terrains of tumor and cancer imaging. The code is available at; https://github.com/Mr-TalhaIlyas/FARS.


Asunto(s)
Microscopía , Neoplasias , Humanos , Semántica , Procesamiento de Imagen Asistido por Computador
10.
Comput Med Imaging Graph ; 116: 102417, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067303

RESUMEN

In the domain of Computer-Aided Diagnosis (CAD) systems, the accurate identification of cancer lesions is paramount, given the life-threatening nature of cancer and the complexities inherent in its manifestation. This task is particularly arduous due to the often vague boundaries of cancerous regions, compounded by the presence of noise and the heterogeneity in the appearance of lesions, making precise segmentation a critical yet challenging endeavor. This study introduces an innovative, an iterative feedback mechanism tailored for the nuanced detection of cancer lesions in a variety of medical imaging modalities, offering a refining phase to adjust detection results. The core of our approach is the elimination of the need for an initial segmentation mask, a common limitation in iterative-based segmentation methods. Instead, we utilize a novel system where the feedback for refining segmentation is derived directly from the encoder-decoder architecture of our neural network model. This shift allows for more dynamic and accurate lesion identification. To further enhance the accuracy of our CAD system, we employ a multi-scale feedback attention mechanism to guide and refine predicted mask subsequent iterations. In parallel, we introduce a sophisticated weighted feedback loss function. This function synergistically combines global and iteration-specific loss considerations, thereby refining parameter estimation and improving the overall precision of the segmentation. We conducted comprehensive experiments across three distinct categories of medical imaging: colonoscopy, ultrasonography, and dermoscopic images. The experimental results demonstrate that our method not only competes favorably with but also surpasses current state-of-the-art methods in various scenarios, including both standard and challenging out-of-domain tasks. This evidences the robustness and versatility of our approach in accurately identifying cancer lesions across a spectrum of medical imaging contexts. Our source code can be found at https://github.com/dewamsa/EfficientFeedbackNetwork.


Asunto(s)
Redes Neurales de la Computación , Humanos , Neoplasias/diagnóstico por imagen , Retroalimentación , Interpretación de Imagen Asistida por Computador/métodos , Diagnóstico por Computador/métodos , Algoritmos
11.
Front Plant Sci ; 14: 1234616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621880

RESUMEN

Recent developments in deep learning-based automatic weeding systems have shown promise for unmanned weed eradication. However, accurately distinguishing between crops and weeds in varying field conditions remains a challenge for these systems, as performance deteriorates when applied to new or different fields due to insignificant changes in low-level statistics and a significant gap between training and test data distributions. In this study, we propose an approach based on unsupervised domain adaptation to improve crop-weed recognition in new, unseen fields. Our system addresses this issue by learning to ignore insignificant changes in low-level statistics that cause a decline in performance when applied to new data. The proposed network includes a segmentation module that produces segmentation maps using labeled (training field) data while also minimizing entropy using unlabeled (test field) data simultaneously, and a discriminator module that maximizes the confusion between extracted features from the training and test farm samples. This module uses adversarial optimization to make the segmentation network invariant to changes in the field environment. We evaluated the proposed approach on four different unseen (test) fields and found consistent improvements in performance. These results suggest that the proposed approach can effectively handle changes in new field environments during real field inference.

12.
Front Plant Sci ; 14: 1238722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941667

RESUMEN

Previous work on plant disease detection demonstrated that object detectors generally suffer from degraded training data, and annotations with noise may cause the training task to fail. Well-annotated datasets are therefore crucial to build a robust detector. However, a good label set generally requires much expert knowledge and meticulous work, which is expensive and time-consuming. This paper aims to learn robust feature representations with inaccurate bounding boxes, thereby reducing the model requirements for annotation quality. Specifically, we analyze the distribution of noisy annotations in the real world. A teacher-student learning paradigm is proposed to correct inaccurate bounding boxes. The teacher model is used to rectify the degraded bounding boxes, and the student model extracts more robust feature representations from the corrected bounding boxes. Furthermore, the method can be easily generalized to semi-supervised learning paradigms and auto-labeling techniques. Experimental results show that applying our method to the Faster-RCNN detector achieves a 26% performance improvement on the noisy dataset. Besides, our method achieves approximately 75% of the performance of a fully supervised object detector when 1% of the labels are available. Overall, this work provides a robust solution to real-world location noise. It alleviates the challenges posed by noisy data to precision agriculture, optimizes data labeling technology, and encourages practitioners to further investigate plant disease detection and intelligent agriculture at a lower cost. The code will be released at https://github.com/JiuqingDong/TS_OAMIL-for-Plant-disease-detection.

13.
Front Plant Sci ; 14: 1243822, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849839

RESUMEN

Plant disease detection has made significant strides thanks to the emergence of deep learning. However, existing methods have been limited to closed-set and static learning settings, where models are trained using a specific dataset. This confinement restricts the model's adaptability when encountering samples from unseen disease categories. Additionally, there is a challenge of knowledge degradation for these static learning settings, as the acquisition of new knowledge tends to overwrite the old when learning new categories. To overcome these limitations, this study introduces a novel paradigm for plant disease detection called open-world setting. Our approach can infer disease categories that have never been seen during the model training phase and gradually learn these unseen diseases through dynamic knowledge updates in the next training phase. Specifically, we utilize a well-trained unknown-aware region proposal network to generate pseudo-labels for unknown diseases during training and employ a class-agnostic classifier to enhance the recall rate for unknown diseases. Besides, we employ a sample replay strategy to maintain recognition ability for previously learned classes. Extensive experimental evaluation and ablation studies investigate the efficacy of our method in detecting old and unknown classes. Remarkably, our method demonstrates robust generalization ability even in cross-species disease detection experiments. Overall, this open-world and dynamically updated detection method shows promising potential to become the future paradigm for plant disease detection. We discuss open issues including classification and localization, and propose promising approaches to address them. We encourage further research in the community to tackle the crucial challenges in open-world plant disease detection. The code will be released at https://github.com/JiuqingDong/OWPDD.

14.
Front Plant Sci ; 14: 1225409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810377

RESUMEN

Recent advancements in deep learning have brought significant improvements to plant disease recognition. However, achieving satisfactory performance often requires high-quality training datasets, which are challenging and expensive to collect. Consequently, the practical application of current deep learning-based methods in real-world scenarios is hindered by the scarcity of high-quality datasets. In this paper, we argue that embracing poor datasets is viable and aims to explicitly define the challenges associated with using these datasets. To delve into this topic, we analyze the characteristics of high-quality datasets, namely, large-scale images and desired annotation, and contrast them with the limited and imperfect nature of poor datasets. Challenges arise when the training datasets deviate from these characteristics. To provide a comprehensive understanding, we propose a novel and informative taxonomy that categorizes these challenges. Furthermore, we offer a brief overview of existing studies and approaches that address these challenges. We point out that our paper sheds light on the importance of embracing poor datasets, enhances the understanding of the associated challenges, and contributes to the ambitious objective of deploying deep learning in real-world applications. To facilitate the progress, we finally describe several outstanding questions and point out potential future directions. Although our primary focus is on plant disease recognition, we emphasize that the principles of embracing and analyzing poor datasets are applicable to a wider range of domains, including agriculture. Our project is public available at https://github.com/xml94/EmbracingLimitedImperfectTrainingDatasets.

15.
Front Plant Sci ; 14: 1211075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711291

RESUMEN

Plant phenotyping is a critical field in agriculture, aiming to understand crop growth under specific conditions. Recent research uses images to describe plant characteristics by detecting visual information within organs such as leaves, flowers, stems, and fruits. However, processing data in real field conditions, with challenges such as image blurring and occlusion, requires improvement. This paper proposes a deep learning-based approach for leaf instance segmentation with a local refinement mechanism to enhance performance in cluttered backgrounds. The refinement mechanism employs Gaussian low-pass and High-boost filters to enhance target instances and can be applied to the training or testing dataset. An instance segmentation architecture generates segmented masks and detected areas, facilitating the derivation of phenotypic information, such as leaf count and size. Experimental results on a tomato leaf dataset demonstrate the system's accuracy in segmenting target leaves despite complex backgrounds. The investigation of the refinement mechanism with different kernel sizes reveals that larger kernel sizes benefit the system's ability to generate more leaf instances when using a High-boost filter, while prediction performance decays with larger Gaussian low-pass filter kernel sizes. This research addresses challenges in real greenhouse scenarios and enables automatic recognition of phenotypic data for smart agriculture. The proposed approach has the potential to enhance agricultural practices, ultimately leading to improved crop yields and productivity.

16.
Sensors (Basel) ; 12(3): 3587-604, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737026

RESUMEN

A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

17.
Front Plant Sci ; 13: 989086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186017

RESUMEN

For continual learning in the process of plant disease recognition it is necessary to first distinguish between unknown diseases from those of known diseases. This paper deals with two different but related deep learning techniques for the detection of unknown plant diseases; Open Set Recognition (OSR) and Out-of-Distribution (OoD) detection. Despite the significant progress in OSR, it is still premature to apply it to fine-grained recognition tasks without outlier exposure that a certain part of OoD data (also called known unknowns) are prepared for training. On the other hand, OoD detection requires intentionally prepared outlier data during training. This paper analyzes two-head network included in OoD detection models, and semi-supervised OpenMatch associated with OSR technology, which explicitly and implicitly assume outlier exposure, respectively. For the experiment, we built an image dataset of eight strawberry diseases. In general, a two-head network and OpenMatch cannot be compared due to different training settings. In our experiment, we changed their training procedures to make them similar for comparison and show that modified training procedures resulted in reasonable performance, including more than 90% accuracy for strawberry disease classification as well as detection of unknown diseases. Accurate detection of unknown diseases is an important prerequisite for continued learning.

18.
Sci Rep ; 12(1): 8672, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606487

RESUMEN

Fine segmentation labelling tasks are time consuming and typically require a great deal of manual labor. This paper presents a novel method for efficiently creating pixel-level fine segmentation labelling that significantly reduces the amount of necessary human labor. The proposed method utilizes easily produced multiple and complementary coarse labels to build a complete fine label via supervised learning. The primary label among the coarse labels is the manual label, which is produced with simple contours or bounding boxes that roughly encompass an object. All others coarse labels are complementary and are generated automatically using existing algorithms. Fine labels can be rapidly created during the supervised learning of such coarse labels. In the experimental study, the proposed technique achieved a fine label IOU (intersection of union) of 92% in segmenting our newly constructed bean field dataset. The proposed method also achieved 95% and 92% mean IOU when tested on publicly available agricultural CVPPP and CWFID datasets, respectively. Our proposed method of segmentation also achieved a mean IOU of 81% when it was tested on our newly constructed paprika disease dataset, which includes multiple categories.


Asunto(s)
Fenómenos Biológicos , Procesamiento de Imagen Asistido por Computador , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
19.
Neural Netw ; 151: 1-15, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35367734

RESUMEN

Nuclei segmentation and classification of hematoxylin and eosin-stained histology images is a challenging task due to a variety of issues, such as color inconsistency that results from the non-uniform manual staining operations, clustering of nuclei, and blurry and overlapping nuclei boundaries. Existing approaches involve segmenting nuclei by drawing their polygon representations or by measuring the distances between nuclei centroids. In contrast, we leverage the fact that morphological features (appearance, shape, and texture) of nuclei in a tissue vary greatly depending upon the tissue type. We exploit this information by extracting tissue specific (TS) features from raw histopathology images using the proposed tissue specific feature distillation (TSFD) backbone. The bi-directional feature pyramid network (BiFPN) within TSFD-Net generates a robust hierarchical feature pyramid utilizing TS features where the interlinked decoders jointly optimize and fuse these features to generate final predictions. We also propose a novel combinational loss function for joint optimization and faster convergence of our proposed network. Extensive ablation studies are performed to validate the effectiveness of each component of TSFD-Net. The proposed network outperforms state-of-the-art networks such as StarDist, Micro-Net, Mask-RCNN, Hover-Net, and CPP-Net on the PanNuke dataset, which contains 19 different tissue types and 5 clinically important tumor classes, achieving 50.4% and 63.77% mean and binary panoptic quality, respectively. The code is available at: https://github.com/Mr-TalhaIlyas/TSFD.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Núcleo Celular , Análisis por Conglomerados , Destilación , Procesamiento de Imagen Asistido por Computador/métodos
20.
Front Plant Sci ; 13: 983625, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275542

RESUMEN

The emergence of deep neural networks has allowed the development of fully automated and efficient diagnostic systems for plant disease and pest phenotyping. Although previous approaches have proven to be promising, they are limited, especially in real-life scenarios, to properly diagnose and characterize the problem. In this work, we propose a framework which besides recognizing and localizing various plant abnormalities also informs the user about the severity of the diseases infecting the plant. By taking a single image as input, our algorithm is able to generate detailed descriptive phrases (user-defined) that display the location, severity stage, and visual attributes of all the abnormalities that are present in the image. Our framework is composed of three main components. One of them is a detector that accurately and efficiently recognizes and localizes the abnormalities in plants by extracting region-based anomaly features using a deep neural network-based feature extractor. The second one is an encoder-decoder network that performs pixel-level analysis to generate abnormality-specific severity levels. Lastly is an integration unit which aggregates the information of these units and assigns unique IDs to all the detected anomaly instances, thus generating descriptive sentences describing the location, severity, and class of anomalies infecting plants. We discuss two possible ways of utilizing the abovementioned units in a single framework. We evaluate and analyze the efficacy of both approaches on newly constructed diverse paprika disease and pest recognition datasets, comprising six anomaly categories along with 11 different severity levels. Our algorithm achieves mean average precision of 91.7% for the abnormality detection task and a mean panoptic quality score of 70.78% for severity level prediction. Our algorithm provides a practical and cost-efficient solution to farmers that facilitates proper handling of crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA