Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.063
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 164(1-2): 183-196, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771491

RESUMEN

Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.


Asunto(s)
Astrocitos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Tálamo/metabolismo , Animales , Células COS , Chlorocebus aethiops , Predominio Ocular , Humanos , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal , Sinapsis/metabolismo
2.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38966948

RESUMEN

Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.


Asunto(s)
Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo/métodos , Trastorno del Espectro Autista/genética , Variación Genética , Programas Informáticos , Cromatina/genética , Cromatina/metabolismo , Genoma Humano
3.
PLoS Genet ; 18(9): e1010404, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121845

RESUMEN

Most somatic mutations that arise during normal development are present at low levels in single or multiple tissues depending on the developmental stage and affected organs. However, the effect of human developmental stages or mutations of different organs on the features of somatic mutations is still unclear. Here, we performed a systemic and comprehensive analysis of low-level somatic mutations using deep whole-exome sequencing (average read depth ~500×) of 498 multiple organ tissues with matched controls from 190 individuals. Our results showed that early clone-forming mutations shared between multiple organs were lower in number but showed higher allele frequencies than late clone-forming mutations [0.54 vs. 5.83 variants per individual; 6.17% vs. 1.5% variant allele frequency (VAF)] along with less nonsynonymous mutations and lower functional impacts. Additionally, early and late clone-forming mutations had unique mutational signatures that were distinct from mutations that originated from tumors. Compared with early clone-forming mutations that showed a clock-like signature across all organs or tissues studied, late clone-forming mutations showed organ, tissue, and cell-type specificity in the mutation counts, VAFs, and mutational signatures. In particular, analysis of brain somatic mutations showed a bimodal occurrence and temporal-lobe-specific signature. These findings provide new insights into the features of somatic mosaicism that are dependent on developmental stage and brain regions.


Asunto(s)
Mosaicismo , Neoplasias , Frecuencia de los Genes , Humanos , Mutación , Neoplasias/genética , Secuenciación del Exoma
4.
Oncologist ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028339

RESUMEN

BACKGROUND: The physical dependence on prescription opioids among cancer survivors remains an under-investigated area, with a scarcity of well-designed prospective studies. METHODS: This single-arm, phase-2 clinical trial in Korea assessed the efficacy and safety of a transdermal buprenorphine patch (TBP) in managing physical dependence on prescription opioids in cancer survivors, as confirmed through the DSM-5 criteria or psychiatric consultation for opioid withdrawal. This study involved a 4-phase treatment protocol of screening, induction/stabilization, discontinuation, and monitoring. The primary outcome was the rate of successful opioid discontinuation, as measured by a negative urine-drug screening at 8 weeks. Key secondary outcomes included the resumption of prescribed opioids, changes in both the Clinical Opioid Withdrawal Scale (COWS) and morphine equivalent daily dose (MEDD), and assessments related to the psychological and physiological aspects of dependence and safety. RESULTS: Thirty-one participants were enrolled. In the intention-to-treat population, the success rate of opioid discontinuation was 58%, with only 2 participants experiencing a resumption of prescribed opioids. Significant reductions were observed in MEDD, which decreased from 98 to 26 mg/day (P < .001), and COWS scores, which decreased from 5.5 to 2.8 (P < .001). Desire to use opioids reduced from 7.0 to 3.0 on a 10-point numeric rating scale (P < .001). Toxicities related to TBP were mild and manageable, without severe precipitated withdrawal symptoms. CONCLUSION: TBP may be considered as an alternative therapeutic option in cancer survivors physically dependent on prescription opioids, especially where sublingual formulations are unavailable.

5.
Biochem Biophys Res Commun ; 695: 149482, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38211529

RESUMEN

ß-Hydroxybutyrate (ß-HB), the primary circulating ketone body, plays a dual role as both a metabolic fuel and an endogenous signaling molecule, offering diverse systemic benefits. Recent studies have highlighted the renoprotective effects of exogenous ß-HB therapy in various animal models of kidney disease. In this investigation, our goal was to assess whether pre-treatment with exogenous ß-HB could alleviate kidney damage in a mouse model of cisplatin-induced acute kidney injury (AKI). Prior to cisplatin administration, intraperitoneal administration of ß-HB was carried out, and the groups were classified into four: Sham, ß-HB, cisplatin, and ß-HB + cisplatin. The tubular damage score and serum creatinine levels were significantly lower in the ß-HB + cisplatin group compared to the cisplatin group. Furthermore, the expression of phosphorylated NF-κB, inflammatory cytokines, and the quantity of F4/80-positive macrophages in the ß-HB + cisplatin group were reduced compared to those in the cisplatin group. Additionally, oxidative stress markers for DNA, protein, and lipid in the ß-HB + cisplatin group were markedly diminished compared to those in the cisplatin group. The number of TUNEL-positive and cleaved caspase 3-positive tubular cells in the ß-HB + cisplatin group was lower than in the cisplatin group. Pre-treating with exogenous ß-HB effectively mitigated kidney damage by suppressing inflammation, oxidative stress, and tubular apoptosis in cisplatin-induced AKI. Therefore, exogenous ß-HB as a pre-treatment emerges as a promising and novel strategy for preventing cisplatin-induced AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Cisplatino/efectos adversos , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Apoptosis , Transducción de Señal , Riñón/metabolismo
6.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34027990

RESUMEN

Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1-/- and JARID2-/- hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved 'microRNA-1-JARID2' axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.


Asunto(s)
Genoma , Organogénesis , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular , Cromatina , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/crecimiento & desarrollo , Histonas/genética , Humanos , MicroARNs
7.
Stem Cells ; 41(10): 958-970, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37539750

RESUMEN

The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.


Asunto(s)
Células Endoteliales , Análisis de Expresión Génica de una Sola Célula , Ratones , Animales , Células Endoteliales/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Corazón , Factores de Transcripción/metabolismo
8.
Mol Psychiatry ; 28(11): 4642-4654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730842

RESUMEN

Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.


Asunto(s)
Área Hipotalámica Lateral , Área Tegmental Ventral , Animales , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Área Hipotalámica Lateral/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/metabolismo
9.
Langmuir ; 40(32): 16670-16689, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38913990

RESUMEN

Waste polystyrene contributes considerably to environmental pollution due to its persistent nature, prompting a widespread consensus on the urgent need for viable recycling solutions. Owing to the aromatic groups structure of polystyrene, hyper-cross-linked polymers can be synthesized through the Friedel-Crafts cross-linking reaction using Lewis acids as catalysts. In addition, hyper-cross-linked polystyrene and its carbonaceous counterparts can be used in several important applications, which helps in their efficient recycling. This review systematically explores methods for preparing multifunctional hyper-cross-linked polymers from waste polystyrene and their applications in sustainable recycling. We have comprehensively outlined various synthetic approaches for these polymers and investigated their physical and chemical properties. These multifunctional polymers not only exhibit structural flexibility but also demonstrate diversity in performance, making them suitable for various applications. Through a systematic examination of synthetic methods, we showcase the cutting-edge positions of these materials in the field of hyper-cross-linked polymers. Additionally, we provide in-depth insights into the potential applications of these hyper-cross-linked polymers in intentional recycling, highlighting their important contributions to environmental protection and sustainable development. This research provides valuable references to the fields of sustainable materials science and waste management, encouraging further exploration of innovative approaches for the utilization of discarded polystyrene.

10.
BMC Infect Dis ; 24(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166696

RESUMEN

BACKGROUND: As the population acquires immunity through vaccination and natural infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the intrinsic severity of coronavirus disease (COVID-19) is becoming challenging. We aimed to evaluate the intrinsic severity regarding circulating variants of SARS-CoV-2 and to compare this between vaccinated and unvaccinated individuals. METHODS: With unvaccinated and initially infected confirmed cases of COVID-19, we estimated the case severity rate (CSR); case fatality rate (CFR); and mortality rate (MR), including severe/critical cases and deaths, stratified by age and compared by vaccination status according to the period regarding the variants of COVID-19 and vaccination. The overall rate was directly standardized with age. RESULTS: The age-standardized CSRs (aCSRs) of the unvaccinated group were 2.12%, 5.51%, and 0.94% in the pre-delta, delta, and omicron period, respectively, and the age-standardized CFRs (aCFRs) were 0.60%, 2.49%, and 0.63% in each period, respectively. The complete vaccination group had lower severity than the unvaccinated group over the entire period showing under 1% for the aCSR and 0.5% for the aCFR. The age-standardized MR of the unvaccinated group was 448 per million people per month people in the omicron period, which was 11 times higher than that of the vaccinated group. In terms of age groups, the CSR and CFR sharply increased with age from the 60 s and showed lower risk reduction in the 80 s when the period changed to the omicron period. CONCLUSIONS: The intrinsic severity of COVID-19 was the highest in the delta period, with over 5% for the aCSR, whereas the completely vaccinated group maintained below 1%. This implies that when the population is vaccinated, the impact of COVID-19 will be limited, even if a new mutation appears. Moreover, considering the decreasing intrinsic severity, the response to COVID-19 should prioritize older individuals at a higher risk of severe disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Mutación , Conducta de Reducción del Riesgo , Vacunación
11.
Exp Cell Res ; 424(2): 113509, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773738

RESUMEN

Maladaptive repair after acute kidney injury (AKI) can predispose patients to chronic kidney disease (CKD). However, the molecular mechanism underlying the AKI-to-CKD transition remains unclear. The Akt signaling pathway has been reported to be involved in the pathological processes of both AKI and CKD. In this study, we investigated the role of Akt1 in a murine model of the AKI-to-CKD transition. Wild-type (WT) and Akt1-/- mice were subjected to unilateral ischemia-reperfusion injury (UIRI), with their kidneys harvested after two days and two, four, and six weeks after UIRI. The dynamic changes in tubulointerstitial fibrosis, markers of tubular epithelial-mesenchymal transition (EMT), and tubular apoptosis were investigated. Akt1 of the three Akt isoforms was activated during the AKI-to-CKD transition. After UIRI, tubulointerstitial fibrosis and tubular EMT were significantly increased in WT mice, but were attenuated in Akt1-/- mice. The expression of the transforming growth factor (TGF)-ß1/Smad was increased in both WT and Akt1-/- mice, but was not different between the two groups. The levels of phosphorylated glycogen synthase kinase (GSK)-3ß, Snail, and ß-catenin in the Akt1-/- mice were lower than those in the WT mice. The number of apoptotic tubular cells and the expression of cleaved caspase-3/Bax were both lower in Akt1-/- mice than in WT mice. Genetic deletion of Akt1 was associated with attenuation of tubulointerstitial fibrosis, tubular EMT, and tubular apoptosis during the AKI-to-CKD transition. These findings were associated with TGF-ß1/Akt1/GSK-3ß/(Snail and ß-catenin) signaling independent of TGF-ß1/Smad signaling. Thus, Akt1 signaling could serve as a potential therapeutic target for inhibiting the AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Fibrosis , Apoptosis , Transición Epitelial-Mesenquimal
12.
Bioorg Chem ; 143: 107070, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38190796

RESUMEN

Three new fusidane-type nortriterpenoids, simplifusinolide A, 24-epi simplifusinolide A, and simplifusidic acid L (1-3), were isolated from the EtOAc extract of the Arctic marine-derived fungus Simplicillium lamellicola culture medium, together with fusidic acid (4) and 16-O-deacetylfusicid acid (5). The structures of the isolated compounds were elucidated by NMR and MS analyses. The absolute configurations of compounds 1-3 were established by the quantum mechanical calculations of electronic circular dichroism and gauge-including atomic orbital NMR chemical shifts, followed by DP4 + analysis. Benign prostatic hyperplasia (BPH) is a major urological disorder in men worldwide. The anti-BPH potentials of the isolated compounds were evaluated using BPH-1 and WPMY-1 cells. Treatment with simplifusidic acid L (3) and fusidic acid (4) significantly downregulated the mRNA levels of the androgen receptor (AR) and its downstream effectors, inhibiting the proliferation of BPH-1 cells. Specifically, treatment with 24-epi simplifusinolide A (2) significantly suppressed the cell proliferation of both BPH-1 and DHT-stimulated WPMY-1 cells by inhibiting AR signaling. These results suggest the potential of 24-epi simplifusinolide A (2), simplifusidic acid L (3) and fusidic acid (4) as alternative agents for BPH treatment by targeting AR signaling.


Asunto(s)
Hypocreales , Hiperplasia Prostática , Masculino , Humanos , Hiperplasia Prostática/tratamiento farmacológico , Ácido Fusídico/farmacología , Extractos Vegetales/farmacología , Proliferación Celular
13.
Psychiatry Clin Neurosci ; 78(7): 405-415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751214

RESUMEN

AIM: Short tandem repeats (STRs) are repetitive DNA sequences and highly mutable in various human disorders. While the involvement of STRs in various genetic disorders has been extensively studied, their role in autism spectrum disorder (ASD) remains largely unexplored. In this study, we aimed to investigate genetic association of STR expansions with ASD using whole genome sequencing (WGS) and identify risk loci associated with ASD phenotypes. METHODS: We analyzed WGS data of 634 ASD families and performed genome-wide evaluation for 12,929 STR loci. We found rare STR expansions that exceeded normal repeat lengths in autism cases compared to unaffected controls. By integrating single cell RNA and ATAC sequencing datasets of human postmortem brains, we prioritized STR loci in genes specifically expressed in cortical development stages. A deep learning method was used to predict functionality of ASD-associated STR loci. RESULTS: In ASD cases, rare STR expansions predominantly occurred in early cortical layer-specific genes involved in neurodevelopment, highlighting the cellular specificity of STR-associated genes in ASD risk. Leveraging deep learning prediction models, we demonstrated that these STR expansions disrupted the regulatory activity of enhancers and promoters, suggesting a potential mechanism through which they contribute to ASD pathogenesis. We found that individuals with ASD-associated STR expansions exhibited more severe ASD phenotypes and diminished adaptability compared to non-carriers. CONCLUSION: Short tandem repeat expansions in cortical layer-specific genes are associated with ASD and could potentially be a risk genetic factor for ASD. Our study is the first to show evidence of STR expansion associated with ASD in an under-investigated population.


Asunto(s)
Trastorno del Espectro Autista , Repeticiones de Microsatélite , Humanos , Trastorno del Espectro Autista/genética , Repeticiones de Microsatélite/genética , Masculino , Femenino , Corteza Cerebral/patología , Fenotipo , Niño , Secuenciación Completa del Genoma , Aprendizaje Profundo , Índice de Severidad de la Enfermedad , Adulto , Expansión de las Repeticiones de ADN/genética
14.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000932

RESUMEN

This paper proposed a fine dust detection system using time-interleaved counters in which surface acoustic wave (SAW) sensors changed the resonance point characteristic. When fine dust was applied to the SAW sensor, the resonance point decreased. The SAW oscillator made of the SAW sensor and radio frequency (RF) amplifier generated an oscillation frequency that was the same as the resonance frequency. The oscillation frequency was transferred to digital data by a 20-bit asynchronous counter. This system has two channels: a sensing channel and a reference channel. Each channel has a SAW oscillator and a 20-bit asynchronous counter. The difference of the two channel counter results is the frequency difference. Through this, it is possible to know whether fine dust adheres to the SAW sensor. The proposed circuit achieved 0.95 ppm frequency resolution when it was operated at a frequency of 460 MHz. This circuit was implemented in a TSMC 130 nm CMOS process.

15.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062895

RESUMEN

Ischemia-reperfusion injury (IRI) in the kidneys is a major cause of acute kidney injury (AKI). Time-restricted feeding (TRF), known for its metabolic health benefits and alleviation of various chronic diseases without calorie restriction, was investigated for its potential protective effects against IRI-induced AKI. Male C57BL/6 mice underwent unilateral IRI, with their kidneys collected after two days. For two weeks before IRI induction, the TRF group had unlimited access to standard chow but within an 8-hour feeding window during the dark cycle. The study groups were Control, TRF, IRI, and TRF + IRI. In the TRF + IRI group, tubular damage scores significantly decreased compared to the IRI group. Furthermore, the TRF + IRI mice had lower levels of phosphorylated NF-κB and fewer F4/80-positive macrophages than the IRI group. Oxidative stress markers for lipids and proteins were also notably lower in the TRF + IRI group. Additionally, TUNEL-positive tubular cells and cleaved caspase-3 expression were reduced in the TRF + IRI group. Without calorie restriction, TRF mitigated renal damage by reducing inflammation, oxidative stress, and tubular apoptosis in renal IRI. This suggests that TRF could be a promising dietary strategy to prevent IRI-induced AKI.


Asunto(s)
Lesión Renal Aguda , Riñón , Ratones Endogámicos C57BL , Estrés Oxidativo , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Masculino , Ratones , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Riñón/metabolismo , Riñón/patología , Apoptosis , Modelos Animales de Enfermedad , FN-kappa B/metabolismo
16.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675559

RESUMEN

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Asunto(s)
Apoptosis , Osteoblastos , Osteoclastos , Ligando RANK , Rhodophyta , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Etanol/química , Peróxido de Hidrógeno/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Rhodophyta/química
17.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125105

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by the accumulation of amyloid-beta plaques and hyperphosphorylated tau proteins, leading to cognitive decline and neuronal death. However, despite extensive research, there are still no effective treatments for this condition. In this study, a series of chloride-substituted Ramalin derivatives is synthesized to optimize their antioxidant, anti-inflammatory, and their potential to target key pathological features of Alzheimer's disease. The effect of the chloride position on these properties is investigated, specifically examining the potential of these derivatives to inhibit tau aggregation and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity. Our findings demonstrate that several derivatives, particularly RA-3Cl, RA-4Cl, RA-26Cl, RA-34Cl, and RA-35Cl, significantly inhibit tau aggregation with inhibition rates of approximately 50%. For BACE-1 inhibition, Ramalin and RA-4Cl also significantly decrease BACE-1 expression in N2a cells by 40% and 38%, respectively, while RA-23Cl and RA-24Cl showed inhibition rates of 30% and 35% in SH-SY5Y cells. These results suggest that chloride-substituted Ramalin derivatives possess promising multifunctional properties for AD treatment, warranting further investigation and optimization for clinical applications.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Proteínas tau/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Cloruros/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Agregado de Proteínas/efectos de los fármacos , Línea Celular Tumoral , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química
18.
Kidney Int ; 104(4): 724-739, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399974

RESUMEN

Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.


Asunto(s)
Daño por Reperfusión , Ácido Succínico , Ratones , Animales , Ácido Succínico/farmacología , Especies Reactivas de Oxígeno , Ratones Noqueados , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Isquemia/tratamiento farmacológico , Riñón , Mitocondrias , Reperfusión
19.
Environ Microbiol ; 25(6): 1099-1117, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36721374

RESUMEN

Ocean warming and acidification interactively affect the coccolithophore physiology and drives major biogeochemical changes. While numerous studies investigated coccolithophore under short-term conditions, knowledge on how different transitional periods over long-exposure could influence the element, macromolecular and metabolic changes for its acclimation are largely unknown. We cultured the coccolithophore Chrysotila dentata, (culture generations of 1st, 10th, and 20th) under present (low-temperature low-carbon-dioxide [LTLC]) and projected (high-temperature high-carbon-dioxide [HTHC]) ocean conditions. We examined elemental and macromolecular component changes and sequenced a transcriptome. We found that with long-exposure, most physiological responses in HTHC cells decreased when compared with those in LTLC, however, HTHC cell physiology showed constant elevation between each generation. Specifically, compared to 1st generation, the 20th generation HTHC cells showed increases in quota carbon (Qc:29%), nitrogen (QN :101%), and subsequent changes in C:N-ratio (68%). We observed higher lipid accumulation than carbohydrates within HTHC cells under long-exposure, suggesting that lipids were used as an alternative energy source for cellular acclimation. Protein biosynthesis pathways increased their efficiency during long-term HTHC condition, indicating that cells produced more proteins than required to initiate acclimation. Our findings suggest that the coccolithophore resilience increased between the 1st-10th generation to initiate the acclimation process under ocean warming and acidifying conditions.


Asunto(s)
Aclimatación , Carbono , Concentración de Iones de Hidrógeno , Aclimatación/fisiología , Carbono/metabolismo , Temperatura , Océanos y Mares , Agua de Mar/química , Dióxido de Carbono/análisis
20.
Small ; 19(44): e2303432, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394708

RESUMEN

In the quest for materials sustainability for grid-scale applications, graphene quantum dot (GQD), prepared via eco-efficient processes, is one of the promising graphitic-organic matters that have the potential to provide greener solutions for replacing metal-based battery electrodes. However, the utilization of GQDs as electroactive materials has been limited; their redox behaviors associated with the electronic bandgap property from the sp2 carbon subdomains, surrounded by functional groups, are yet to be understood. Here, the experimental realization of a subdomained GQD-based anode with stable cyclability over 1000 cycles, combined with theoretical calculations, enables a better understanding of the decisive impact of controlled redox site distributions on battery performance. The GQDs are further employed in cathode as a platform for full utilization of inherent electrochemical activity of bio-inspired redox-active organic motifs, phenoxazine. Using the GQD-derived anode and cathode, an all-GQD battery achieves a high energy density of 290 Wh kgcathode -1 (160 Wh kgcathode+anode -1 ), demonstrating an effective way to improve reaction reversibility and energy density of sustainable, metal-free batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA