Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373398

RESUMEN

Lateral inhibition mediates alternative cell fate decision and produces regular cell fate patterns with fate symmetry breaking (SB) relying on the amplification of small stochastic differences in Notch activity via an intercellular negative feedback loop. Here, we used quantitative live imaging of endogenous Scute (Sc), a proneural factor, and of a Notch activity reporter to study the emergence of Sensory Organ Precursor cells (SOPs) in the pupal abdomen of Drosophila. SB was observed at low Sc levels and was not preceded by a phase of intermediate Sc expression and Notch activity. Thus, mutual inhibition may only be transient in this context. In support of the intercellular feedback loop model, cell-to-cell variations in Sc levels promoted fate divergence. The size of the apical area of competing cells did not detectably bias this fate choice. Surprisingly, cells that were in direct contact at the time of SB could adopt the SOP fate, albeit at low frequency (10%). These lateral inhibition defects were corrected by cellular rearrangements, not cell fate change, highlighting the role of cell-cell intercalation in pattern refinement.

2.
Mol Genet Genomics ; 298(6): 1435-1447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725237

RESUMEN

High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2326 and 2454 SNP markers that spanned a total genetic distance of 2133 cM across 16 linkage groups and 2169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


Asunto(s)
Perilla , Tetraploidía , Genotipo , Perilla/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Ligamiento Genético , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA