Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(33): e2207275119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939685

RESUMEN

The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Estrés Salino , Intercambiadores de Sodio-Hidrógeno , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidad Proteica , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo
2.
Plant Cell Environ ; 45(6): 1719-1733, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312081

RESUMEN

Leaf senescence proceeds with age but is modulated by various environmental stresses and hormones. Salt stress is one of the most well-known environmental stresses that accelerate leaf senescence. However, the molecular mechanisms that integrate salt stress signalling with leaf senescence programmes remain elusive. In this study, we characterised the role of ETHYLENE RESPONSIVE FACTOR34 (ERF34), an Arabidopsis APETALA2 (AP2)/ERF family transcription factor, in leaf senescence. ERF34 was differentially expressed under various leaf senescence-inducing conditions, and negatively regulated leaf senescence induced by age, dark, and salt stress. ERF34 also promoted salt stress tolerance at different stages of the plant life cycle such as seed germination and vegetative growth. Transcriptome analysis revealed that the overexpression of ERF34 increased the transcript levels of salt stress-responsive genes including COLD-REGULATED15A (COR15A), EARLY RESPONSIVE TO DEHYDRATION10 (ERD10), and RESPONSIVE TO DESICCATION29A (RD29A). Moreover, ERF34 directly bound to ERD10 and RD29A promoters and activated their expression. Our findings indicate that ERF34 plays a key role in the convergence of the salt stress response with the leaf senescence programmes, and is a potential candidate for crop improvement, particularly by enhancing salt stress tolerance.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Etilenos/metabolismo , Senescencia de la Planta , Estrés Salino , Estrés Fisiológico/genética
3.
Medicina (Kaunas) ; 58(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35454319

RESUMEN

Background andObjective: In the present study, a detailed investigation of substructural volume change in the hippocampus (HC) and amygdala (AMG) was performed and the association with clinical features in patients with mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) determined. Methods: The present study included 22 patients with left-sided TLE-HS (LTLE-HS) and 26 patients with right-sided TLE-HS (RTLE-HS). In addition, 28 healthy controls underwent high-resolution T2-weighted image (T2WI) and T1-weighted image (T1WI) MRI scanning. Subfield analysis of HC and AMG was performed using FreeSurfer version 6.0. Results: Patients with TLE-HS showed a decrease in the volume of substructures in both HC and AMG, and this change was observed on the contralateral side and the ipsilateral side with HS. The volume reduction pattern of substructures showed laterality-dependent characteristics. Patients with LTLE-HS had smaller volumes of the ipsilateral subiculum (SUB), contralateral SUB, and ipsilateral cortical nucleus of AMG than patients with RTLE-HS. Patients with RTLE-HS had reduced ipsilateral cornu ammonis (CA) 2/3 and contralateral cortico-amygdaloid transition area (CAT) volumes. The relationship between clinical variables and subregions was different based on the lateralization of the seizure focus. Focal to bilateral tonic-clonic seizures (FTBTCS) was associated with contralateral and ipsilateral side subregions only in LTLE-HS. The abdominal FAS was associated with the volume reduction of AMG subregions only in LTLE-HS, but the volume reduction was less than in patients without FAS. Conclusions: The results indicate that unilateral TLE-HS is a bilateral disease that shows different laterality-dependent characteristics based on the subfield analysis of HC and AMG. Subfield volumes of HC and AMG were associated with clinical variables, and the more damaged substructures depended on laterality in TLE-HS. These findings support the evidence that LTLE-HS and RTLE-HS are disparate epilepsy entities rather than simply identical syndromes harboring a mesial temporal lesion. In addition, the presence of FAS supports good localization value, and abdominal FAS has a high localization value, especially in patients with LTLE-HS.


Asunto(s)
Epilepsia del Lóbulo Temporal , Enfermedades Neurodegenerativas , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/patología , Atrofia , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/patología , Convulsiones , Lóbulo Temporal
4.
Proc Natl Acad Sci U S A ; 115(21): E4930-E4939, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735710

RESUMEN

Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Senescencia Celular , Redes Reguladoras de Genes , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo , Transcriptoma
5.
Plant Mol Biol ; 102(4-5): 447-462, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31898148

RESUMEN

KEY MESSAGE: ZjICE2 works as a positive regulator in abiotic stress responses and ZjICE2 is a valuable genetic resource to improve abiotic stress tolerance in the molecular breeding program of Zoysia japonica. The basic helix-loop-helix (bHLH) family transcription factors (TFs) play an important role in response to biotic or abiotic stresses in plants. However, the functions of bHLH TFs in Zoysia japonica, one of the warm-season turfgrasses, remain poorly understood. Here, we identified ZjICE2 from Z. japonica, a novel MYC-type bHLH transcription factor that was closely related to ICE homologs in the phylogenetic tree, and its expression was regulated by various abiotic stresses. Transient expression of ZjICE2-GFP in onion epidermal cells revealed that ZjICE2 was a nuclear-localized protein. Also, ZjICE2 bound the MYC cis-element in the promoter of dehydration responsive element binding 1 of Z. japonica (ZjDREB1) using yeast one-hybrid assay. A phenotypic analysis showed that overexpression of the ZjICE2 in Arabidopsis enhanced tolerance to cold, drought, and salt stresses. The transgenic Arabidopsis and Z. japonica accumulated more transcripts of cold-responsive DREB/CBFs and their downstream genes than the wild type (WT) after cold treatment. Furthermore, the transgenic plants exhibited an enhanced Reactive oxygen species (ROS) scavenging ability, which resulted in an efficient maintenance of oxidant-antioxidant homeostasis. In addition, overexpression of the ZjICE2 in Z. japonica displayed intensive cold tolerance with increases in chlorophyll contents and photosynthetic efficiency. Our study suggests that ZjICE2 works as a positive regulator in abiotic stress responses and the ICE-DREB/CBFs response pathway involved in cold stress tolerance is also conserved in Z. japonica. These results provide a valuable genetic resource for the molecular breeding program especially for warm-season grasses as well as other leaf crop plants.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Poaceae/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Frío , Respuesta al Choque por Frío , Sequías , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Poaceae/genética , Regulón , Tolerancia a la Sal , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Activación Transcripcional
6.
New Phytol ; 227(2): 473-484, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32163596

RESUMEN

All living organisms are unavoidably exposed to various endogenous and environmental stresses that trigger potentially fatal DNA damage, including double-strand breaks (DSBs). Although a growing body of evidence indicates that DNA damage is one of the prime drivers of aging in animals, little is known regarding the importance of DNA damage and its repair on lifespan control in plants. We found that the level of DSBs increases but DNA repair efficiency decreases as Arabidopsis leaves age. Generation of DSBs by inducible expression of I-PpoI leads to premature senescence phenotypes. We examined the senescence phenotypes in the loss-of-function mutants for 13 key components of the DNA repair pathway and found that deficiency in ATAXIA TELANGIECTASIA MUTATED (ATM), the chief transducer of the DSB signal, results in premature senescence in Arabidopsis. ATM represses DSB-induced expression of senescence-associated genes, including the genes encoding the WRKY and NAC transcription factors, central components of the leaf senescence process, via modulation of histone lysine methylation. Our work highlights the significance of ATM in the control of leaf senescence and has significant implications for the conservation of aging mechanisms in animals and plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ataxia Telangiectasia , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética
7.
Opt Express ; 28(2): 2060-2069, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121904

RESUMEN

In this paper, a psychophysical investigation to improve a visibility of a transparent display is presented. A new illuminance measurement method for the transparent display, named eye illuminance, is proposed. Through a psychophysical experiment, it is found that the eye illuminance is strongly related with the visibility of the transparent display regardless of its background condition. This paper finds out the optimum emission luminance range of the transparent display under various illuminant conditions. Also, the contrast ratio for visibility is analyzed and it is found that a higher contrast ratio is not needed to provide a visually better image under a brighter ambient environment. In conclusion, our findings will contribute to an auto brightness control technology to improve the visibility of the transparent display for augmented reality devices.

8.
Proc Natl Acad Sci U S A ; 114(28): E5712-E5720, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652324

RESUMEN

Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinereaAtABCG34 expression was induced by Abrassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in Athaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents Abrassicicola infection.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Alternaria/patogenicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/metabolismo , Indoles/metabolismo , Enfermedades de las Plantas/microbiología , Tiazoles/metabolismo , Acetatos/farmacología , Arabidopsis/metabolismo , Transporte Biológico , Ciclopentanos/farmacología , Diterpenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Oxilipinas/farmacología , Fenotipo , Filogenia , Hojas de la Planta/metabolismo , Transducción de Señal
9.
New Phytol ; 221(4): 2320-2334, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30266040

RESUMEN

Leaf senescence affects plant fitness. Plants that evolve in different environments are expected to acquire distinct regulations of leaf senescence. However, the adaptive and evolutionary roles of leaf senescence are largely unknown. We investigated leaf senescence in 259 natural accessions of Arabidopsis by quantitatively assaying dark-induced senescence responses using a high-throughput chlorophyll fluorescence imaging system. A meta-analysis of our data with phenotypic and climatic information demonstrated biological and environmental links with leaf senescence. We further performed genome-wide association mapping to identify the genetic loci underlying the diversity of leaf senescence responses. We uncovered a new locus, Genetic Variants in leaf Senescence (GVS1), with high similarity to reductase, where a single nonsynonymous nucleotide substitution at GVS1 mediates the diversity of the senescence trait. Loss-of-function mutations of GVS1 in Columbia-0 delayed leaf senescence and increased sensitivity to oxidative stress, suggesting that this GVS1 variant promotes optimal responses to developmental and environmental signals. Intriguingly, gvs1 loss-of-function mutants display allele- and accession-dependent phenotypes, revealing the functional diversity of GVS1 alleles not only in leaf senescence, but also oxidative stress. Our discovery of GVS1 as the genetic basis of natural variation in senescence programs reinforces its adaptive potential in modulating life histories across diverse environments.


Asunto(s)
Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Variación Genética , Hojas de la Planta/genética , Oscuridad , Ecotipo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Mutación/genética , Estrés Oxidativo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética
10.
New Phytol ; 220(2): 609-623, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29949656

RESUMEN

Plant leaves undergo a series of developmental changes from leaf primordium initiation through growth and maturation to senescence throughout their life span. Although the mechanisms underlying leaf senescence have been intensively elucidated, our knowledge of the interrelationship between early leaf development and senescence is still fragmentary. We isolated the oresara15-1Dominant (ore15-1D) mutant, which had an extended leaf longevity and an enlarged leaf size, from activation-tagged lines of Arabidopsis. Plasmid rescue identified that ORE15 encodes a PLANT A/T-RICH SEQUENCE- AND ZINC-BINDING PROTEIN family transcription factor. Phenotypes of ore15-1D and ore15-2, a loss-of-function mutant, were evaluated through physiological and anatomical analyses. Microarray, quantitative reverse transcription polymerase chain reaction, and chromatin immunoprecipitation as well as genetic analysis were employed to reveal the molecular mechanism of ORE15 in the regulation of leaf growth and senescence. ORE15 enhanced leaf growth by promoting the rate and duration of cell proliferation in the earlier stage and suppressed leaf senescence in the later stage by modulating the GROWTH-REGULATING FACTOR (GRF)/GRF-INTERACTING FACTOR regulatory pathway. Our study highlighted a molecular conjunction through ORE15 between growth and senescence, which are two temporally separate developmental processes during leaf life span.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Factores Generales de Transcripción/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación/genética , Tamaño de los Órganos , Fenotipo , Transducción de Señal , Transcriptoma/genética
11.
Plant Physiol ; 174(2): 1260-1273, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28438793

RESUMEN

Brassinosteroids (BRs) are essential phytohormones regulating various developmental and physiological processes during normal growth and development. cog1-3D (cogwheel1-3D) was identified as an activation-tagged genetic modifier of bri1-5, an intermediate BR receptor mutant in Arabidopsis (Arabidopsis thaliana). COG1 encodes a Dof-type transcription factor found previously to act as a negative regulator of the phytochrome signaling pathway. cog1-3D single mutants show an elongated hypocotyl phenotype under light conditions. A loss-of-function mutant or inducible expression of a dominant negative form of COG1 in the wild type results in an opposite phenotype. A BR profile assay indicated that BR levels are elevated in cog1-3D seedlings. Quantitative reverse transcription-polymerase chain reaction analyses showed that several key BR biosynthetic genes are significantly up-regulated in cog1-3D compared with those of the wild type. Two basic helix-loop-helix transcription factors, PIF4 and PIF5, were found to be transcriptionally up-regulated in cog1-3D Genetic analysis indicated that PIF4 and PIF5 were required for COG1 to promote BR biosynthesis and hypocotyl elongation. Chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 binds to the promoter regions of PIF4 and PIF5, and PIF4 and PIF5 bind to the promoter regions of key BR biosynthetic genes, such as DWF4 and BR6ox2, to directly promote their expression. These results demonstrated that COG1 regulates BR biosynthesis via up-regulating the transcription of PIF4 and PIF5.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Brasinoesteroides/biosíntesis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Vías Biosintéticas/genética , Metanosulfonato de Etilo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Modelos Biológicos , Fenotipo , Mutación Puntual/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Supresión Genética , Factores de Transcripción/genética , Regulación hacia Arriba/genética
12.
J Exp Bot ; 69(4): 787-799, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-28992051

RESUMEN

Plants undergo developmental changes throughout their life history. Senescence, the final stage in the life history of a leaf, is an important and unique developmental process whereby plants relocate nutrients from leaves to other developing organs, such as seeds, stems, or roots. Recent attempts to answer fundamental questions about leaf senescence have employed a combination of new ideas and advanced technologies. As senescence is an integral part of a plant's life history that is linked to earlier developmental stages, age-associated leaf senescence may be analysed from a life history perspective. The successful utilization of multi-omics approaches has resolved the complicated process of leaf senescence, replacing a component-based view with a network-based molecular mechanism that acts in a spatial-temporal manner. Senescence and death are critical for fitness and are thus evolved characters. Recent efforts have begun to focus on understanding the evolutionary basis of the developmental process that incorporates age information and environmental signals into a plant's survival strategy. This review describes recent insights into the regulatory mechanisms of leaf senescence in terms of systems-level spatiotemporal changes, presenting them from the perspectives of life history strategy and evolution.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/crecimiento & desarrollo , Evolución Biológica , Rasgos de la Historia de Vida , Análisis Espacio-Temporal
13.
J Exp Bot ; 69(12): 3023-3036, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648620

RESUMEN

Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.


Asunto(s)
Arabidopsis/fisiología , Hojas de la Planta/fisiología , Transcriptoma/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta/genética
14.
J Exp Bot ; 69(15): 3609-3623, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29722815

RESUMEN

A smoke-derived compound, karrikin (KAR), and an endogenous but as yet unidentified KARRIKIN INSENSITIVE2 (KAI2) ligand (KL) have been identified as chemical cues in higher plants that impact on multiple aspects of growth and development. Genetic screening of light-signaling mutants in Arabidopsis thaliana has identified a mutant designated as ply2 (pleiotropic long hypocotyl2) that has pleiotropic light-response defects. In this study, we used positional cloning to identify the molecular lesion of ply2 as a missense mutation of KAI2/HYPOSENSITIVE TO LIGHT, which causes a single amino acid substitution, Ala219Val. Physiological analysis and genetic epistasis analysis with the KL-signaling components MORE AXILLARY GROWTH2 (MAX2) and SUPPRESSOR OF MAX2 1 suggested that the pleiotropic phenotypes of the ply2 mutant can be ascribed to a defect in KL-signaling. Molecular and biochemical analyses revealed that the mutant KAI2ply2 protein is impaired in its ligand-binding activity. In support of this conclusion, X-ray crystallography studies suggested that the KAI2ply2 mutation not only results in a narrowed entrance gate for the ligand but also alters the structural flexibility of the helical lid domains. We discuss the structural implications of the Ala219 residue with regard to ligand-specific binding and signaling of KAI2, together with potential functions of KL-signaling in the context of the light-regulatory network in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hidrolasas/metabolismo , Fototransducción/efectos de la radiación , Alelos , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Hidrolasas/genética , Ligandos , Luz , Mutación Missense , Fenotipo
15.
Plant Physiol ; 171(1): 452-67, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26966169

RESUMEN

Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Transcriptoma , Elementos sin Sentido (Genética) , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Orgánulos/genética , Orgánulos/metabolismo , Hojas de la Planta/citología , ARN Pequeño no Traducido/genética , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Development ; 140(19): 4060-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24004949

RESUMEN

Nucleocytoplasmic partitioning of core clock components is essential for the proper operation of the circadian system. Previous work has shown that the F-box protein ZEITLUPE (ZTL) and clock element GIGANTEA (GI) heterodimerize in the cytosol, thereby stabilizing ZTL. Here, we report that ZTL post-translationally and reciprocally regulates protein levels and nucleocytoplasmic distribution of GI in Arabidopsis. We use ectopic expression of the N-terminus of ZTL, which contains the novel, light-absorbing region of ZTL (the LOV domain), transient expression assays and ztl mutants to establish that the levels of ZTL, a cytosolic protein, help govern the abundance and distribution of GI in the cytosol and nucleus. Ectopic expression of the ZTL N-terminus lengthens period, delays flowering time and alters hypocotyl length. We demonstrate that these phenotypes can be explained by the competitive interference of the LOV domain with endogenous GI-ZTL interactions. A complex of the ZTL N-terminus polypeptide with endogenous GI (LOV-GI) blocks normal GI function, causing degradation of endogenous ZTL and inhibition of other GI-related phenotypes. Increased cytosolic retention of GI by the LOV-GI complex additionally inhibits nuclear roles of GI, thereby lengthening flowering time. Hence, we conclude that under endogenous conditions, GI stabilization and cytoplasmic retention occurs naturally through a LOV domain-mediated GI-ZTL interaction, and that ZTL indirectly regulates GI nuclear pools by sequestering GI to the cytosol. As the absence of either GI or ZTL compromises clock function and diminishes the protein abundance of the other, our results highlight how their reciprocal co-stabilization is essential for robust circadian oscillations.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunoprecipitación , Plantas Modificadas Genéticamente/genética
17.
Physiol Plant ; 158(2): 180-99, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26910207

RESUMEN

Leaf senescence is not only primarily governed by developmental age but also influenced by various internal and external factors. Although some genes that control leaf senescence have been identified, the detailed regulatory mechanisms underlying integration of diverse senescence-associated signals into the senescence programs remain to be elucidated. To dissect the regulatory pathways involved in leaf senescence, we isolated the not oresara1-1 (nore1-1) mutant showing accelerated leaf senescence phenotypes from an EMS-mutagenized Arabidopsis thaliana population. We found that altered transcriptional programs in defense response-related processes were associated with the accelerated leaf senescence phenotypes observed in nore1-1 through microarray analysis. The nore1-1 mutation activated defense program, leading to enhanced disease resistance. Intriguingly, high ambient temperature effectively suppresses the early senescence and death phenotypes of nore1-1. The gene responsible for the phenotypes of nore1-1 contains a missense mutation in SENESCENCE-ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1), which was reported as a negative regulator of premature senescence in the light intensity- and PHYTOALEXIN DEFICIENT 4 (PAD4)-dependent manner. Through extensive double mutant analyses, we recently identified suppressor of the G2 Allele of SKP1b (SGT1b), one of the positive regulators for disease resistance conferred by many resistance (R) proteins, as a downstream signaling component in NORE1-mediated senescence and cell death pathways. In conclusion, NORE1/SAUL1 is a key factor integrating signals from temperature-dependent defense programs and leaf senescence in Arabidopsis. These findings provide a new insight that plants might utilize defense response program in regulating leaf senescence process, possibly through recruiting the related genes during the evolution of the leaf senescence program.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácido Salicílico/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Mapeo Cromosómico , Resistencia a la Enfermedad , Luz , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Temperatura , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética
18.
Proc Natl Acad Sci U S A ; 110(2): 761-6, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267111

RESUMEN

Circadian clocks are ubiquitous molecular time-keeping mechanisms that coordinate physiology and metabolism and provide an adaptive advantage to higher plants. The central oscillator of the plant clock is composed of interlocked feedback loops that involve multiple repressive factors acting throughout the circadian cycle. Pseudo response regulators (PRRs) comprise a five-member family that is essential to the function of the central oscillator. PRR5, PRR7, and PRR9 can bind the promoters of the core clock genes circadian clock associated 1 (CCA1) and late elongated hypocotyl (LHY) to restrict their expression to near dawn, but the mechanism has been unclear. Here we report that members of the plant Groucho/Tup1 corepressor family, topless/topless-related (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period. This activity is diminished in the presence of the inhibitor trichostatin A, indicating the requirement of histone deacetylase for full TPL activity. Additionally, a complex of PRR9, TPL, and histone deacetylase 6, can form in vivo, implicating this tripartite association as a central repressor of circadian gene expression. Our findings show that the TPL/TPR corepressor family are components of the central circadian oscillator mechanism and reinforces the role of this family as central to multiple signaling pathways in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Histona Desacetilasas/metabolismo , Magnoliopsida/fisiología , Modelos Biológicos , Factores de Transcripción/metabolismo , Imagen de Lapso de Tiempo
19.
Proc Natl Acad Sci U S A ; 108(40): 16843-8, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21949396

RESUMEN

The autoregulatory loops of the circadian clock consist of feedback regulation of transcription/translation circuits but also require finely coordinated cytoplasmic and nuclear proteostasis. Although protein degradation is important to establish steady-state levels, maturation into their active conformation also factors into protein homeostasis. HSP90 facilitates the maturation of a wide range of client proteins, and studies in metazoan clocks implicate HSP90 as an integrator of input or output. Here we show that the Arabidopsis circadian clock-associated F-box protein ZEITLUPE (ZTL) is a unique client for cytoplasmic HSP90. The HSP90-specific inhibitor geldanamycin and RNAi-mediated depletion of cytoplasmic HSP90 reduces levels of ZTL and lengthens circadian period, consistent with ztl loss-of-function alleles. Transient transfection of artificial microRNA targeting cytoplasmic HSP90 genes similarly lengthens period. Proteolytic targets of SCF(ZTL), TOC1 and PRR5, are stabilized in geldanamycin-treated seedlings, whereas the levels of closely related clock proteins, PRR3 and PRR7, are unchanged. An in vitro holdase assay, typically used to demonstrate chaperone activity, shows that ZTL can be effectively bound, and aggregation prevented, by HSP90. GIGANTEA, a unique stabilizer of ZTL, may act in the same pathway as HSP90, possibly linking these two proteins to a similar mechanism. Our findings establish maturation of ZTL by HSP90 as essential for proper function of the Arabidopsis circadian clock. Unlike metazoan systems, HSP90 functions here within the core oscillator. Additionally, F-box proteins as clients may place HSP90 in a unique and more central role in proteostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Transducción de Señal/fisiología , Benzoquinonas/farmacología , Cartilla de ADN/genética , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Lactamas Macrocíclicas/farmacología , Proteolisis/efectos de los fármacos , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos
20.
Mitochondrial DNA B Resour ; 9(1): 88-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38222981

RESUMEN

Jeju-Joritdae (Sasa quelpaertensis Nakai) is a broad-leaved bamboo grass endemic to Mount Halla, Jeju Island, South Korea. In this study, we report the complete chloroplast genome sequence of S. quelpaertensis. Its chloroplast genome is 139,730 bp in size and consists of a large single-copy (LSC, 83,351 bp) region, one small single-copy (SSC, 12,788 bp) region, and two inverted repeats (IRs, 21,796 bp each). The chloroplast genome of S. quelpaertensis encodes 131 genes, including 86 protein-coding, 37 tRNA, and 8 rRNA genes. The overall GC content of the S. quelpaertensis chloroplast genome is 38.86%. Phylogenetic analysis using the chloroplast genome sequence showed that S. quelpaertensis is closely related to Sasa veitchii and Sasella kogasensis. These findings provide valuable genomic resources for future studies of the Sasa genus in South Korea and other countries encompassing its distribution area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA