RESUMEN
DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.
Asunto(s)
ADN Mitocondrial , Efectores Tipo Activadores de la Transcripción , Animales , Humanos , Ratones , Adenina , Citosina , ADN Mitocondrial/genética , Edición Génica , ARN , Efectores Tipo Activadores de la Transcripción/metabolismo , Ingeniería de ProteínasRESUMEN
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
Asunto(s)
Enterocolitis Necrotizante , Microbioma Gastrointestinal , Ratones , Animales , Células de Paneth/fisiología , Diferenciación Celular/fisiología , MacrófagosRESUMEN
Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.
Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Duplicación de Gen , Neuronas/citología , Duplicaciones Segmentarias en el Genoma , Animales , Movimiento Celular , Espinas Dendríticas/metabolismo , Evolución Molecular , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Estructura Terciaria de Proteína , Especificidad de la EspecieRESUMEN
Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Muerte Celular , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Ralstonia/patogenicidad , Ralstonia/genética , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.
Asunto(s)
Glutamato Deshidrogenasa , Ratones Transgénicos , Neuronas , Receptores de Glutamato , Animales , Ratones , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Receptores de Glutamato/metabolismo , Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Subunidad beta del Receptor de Interleucina-10 , Células Mieloides , Recurrencia Local de Neoplasia , Neoplasias Pancreáticas , Receptores de Interleucina , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangre , Humanos , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangre , Ratones , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Receptores de Interleucina/genética , Células Mieloides/metabolismo , Células Mieloides/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Subunidad beta del Receptor de Interleucina-10/genética , Femenino , Masculino , Microambiente Tumoral/genética , Línea Celular TumoralRESUMEN
BACKGROUND: Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS: ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS: The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-ß signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS: ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Calcinosis , Humanos , Animales , Ratones , Conejos , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Osteogénesis , Calcinosis/tratamiento farmacológico , Células Cultivadas , Fibrosis , Colesterol , Receptores de Interleucina-1 , LípidosRESUMEN
BACKGROUND: We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aß/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS: To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS: In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aß/tau fibrillation, Aß plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100ß and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS: Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aß/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Receptores de Dopamina D1 , Transducción de Señal , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptores de Dopamina D1/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Cognición/efectos de los fármacos , Dopamina/metabolismo , Ratones Endogámicos C57BL , Masculino , HumanosRESUMEN
Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.
Asunto(s)
Galactosilceramidasa , Estudios de Asociación Genética , Leucodistrofia de Células Globoides , Fenotipo , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/fisiopatología , Galactosilceramidasa/genética , Masculino , Femenino , República de Corea/epidemiología , Preescolar , Adulto , Lactante , Niño , Adolescente , Adulto Joven , Mutación/genética , Genotipo , Predisposición Genética a la Enfermedad , Edad de InicioRESUMEN
Bovine intestinal alkaline phosphatase (biALP), a membrane-bound plasma metalloenzyme, maintains intestinal homeostasis, regulates duodenal surface pH, and protects against infections caused by pathogenic bacteria. The N-glycans of biALP regulate its enzymatic activity, protein folding, and thermostability, but their structures are not fully reported. In this study, the structures and quantities of the N-glycans of biALP were analyzed by liquid chromatography-electrospray ionization-high energy collision dissociation-tandem mass spectrometry. In total, 48 N-glycans were identified and quantified, comprising high-mannose [6 N-glycans, 33.1 % (sum of relative quantities of each N-glycan)], hybrid (6, 11.9 %), and complex (36, 55.0 %) structures [bi- (13, 26.1 %), tri- (16, 21.5 %), and tetra-antennary (7, 7.4 %)]. These included bisecting N-acetylglucosamine (33, 56.6 %), mono-to tri-fucosylation (32, 53.3 %), mono-to tri-α-galactosylation (16, 20.7 %), and mono-to tetra-ß-galactosylation (36, 58.5 %). No sialylation was identified. N-glycans with non-bisecting GlcNAc (9, 10.3 %), non-fucosylation (10, 13.6 %), non-α-galactosylation (26, 46.2 %), and non-ß-galactosylation (6, 8.4 %) were also identified. The activity (100 %) of biALP was reduced to 37.3 ± 0.2 % (by de-fucosylation), 32.7 ± 2.9 % (by de-α-galactosylation), and 0.2 ± 0.2 % (by de-ß-galactosylation), comparable to inhibition by 10-4 to 101 mM EDTA, a biALP inhibitor. These results indicate that fucosylated and galactosylated N-glycans, especially ß-galactosylation, affected the activity of biALP. This study is the first to identify 48 diverse N-glycan structures and quantities of bovine as well as human intestinal ALP and to demonstrate the importance of the role of fucosylation and galactosylation for maintaining the activity of biALP.
Asunto(s)
Fosfatasa Alcalina , Galactosa , Polisacáridos , Animales , Bovinos , Polisacáridos/metabolismo , Polisacáridos/química , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Galactosa/metabolismo , Fucosa/metabolismo , Fucosa/química , Intestinos/enzimología , GlicosilaciónRESUMEN
The use of nanocarriers decorated with penetration-enhancing agents (PEAs) is considered to be a promising approach for efficient transdermal delivery. In this study, we developed short amphiphilic skin-penetrating peptides (17 amino acids) that functioned not only as PEAs but also as building blocks of nanocarriers without the incorporation of additional macromolecules for self-assembly and guest molecule encapsulation. Interestingly, varying only two amino acids in the hydrophobic moiety of the peptides resulted in significantly different self-assembly behavior, thermal stability, protease resistance, and skin-penetration efficiency in a human skin model. The analysis of the peptide secondary structure revealed that such characteristic changes arose due to the sequence variation-mediated conformational change in the hydrophobic block. These findings hold significant promise for the development of simple and effective delivery systems exhibiting controllable supramolecular properties.
Asunto(s)
Péptidos , Piel , Humanos , Péptidos/química , Administración Cutánea , Absorción Cutánea , AminoácidosRESUMEN
Aim: This post-marketing surveillance study evaluated the safety and effectiveness of lenvatinib as first-line treatment for unresectable hepatocellular carcinoma in Korea.Materials & methods: Adverse drug reactions (ADRs) and other safety and effectiveness end points were assessed in patients who initiated lenvatinib according to the approved label in republic of Korea.Results: Among 658 lenvatinib-treated patients, ADRs were reported in 57.8%; ADRs grade ≥3 in 13.5%. The most common grade ≥3 ADRs were asthenia (1.2%) and hepatic encephalopathy (1.2%). Physician-reported tumor responses (n = 511) were complete (1.0%) or partial (12.9%) response and stable (45.2%) or progressive disease (40.9%); objective response rates were higher with longer lenvatinib treatment duration (p < 0.001).Conclusion: Lenvatinib was generally well tolerated and effective in real-world clinical practice in Korea.Clinical trial registration: ClinicalTrials.gov NCT05225207.
[Box: see text].
RESUMEN
BACKGROUND: Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development. RESULTS: This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4+CD44+ and CD8+CD44+), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited. CONCLUSIONS: The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.
Asunto(s)
Linfocitos B , Pollos , Citometría de Flujo , Bazo , Animales , Pollos/inmunología , Citometría de Flujo/veterinaria , Bazo/inmunología , Bazo/citología , Linfocitos B/inmunología , Monocitos/inmunología , Embrión de Pollo , Linfocitos T/inmunologíaRESUMEN
BACKGROUND: Kidney biopsy is the standard of care for the diagnosis of various kidney diseases. In particular, chronic histopathologic lesions, such as interstitial fibrosis and tubular atrophy, can provide prognostic information regarding chronic kidney disease progression. In this study, we aimed to evaluate historadiological correlations between CT-based radiomic features and chronic histologic changes in native kidney biopsies and to construct and validate a radiomics-based prediction model for chronicity grade. METHODS: We included patients aged ≥ 18 years who underwent kidney biopsy and abdominal CT scan within a week before kidney biopsy. Left kidneys were three-dimensionally segmented using a deep learning model based on the 3D Swin UNEt Transformers architecture. We additionally defined isovolumic cortical regions of interest near the lower pole of the left kidneys. Shape, first-order, and high-order texture features were extracted after resampling and kernel normalization. Correlations and diagnostic metrics between extracted features and chronic histologic lesions were examined. A machine learning-based radiomic prediction model for moderate chronicity was developed and compared according to the segmented regions of interest (ROI). RESULTS: Overall, moderate correlations with statistical significance (P < 0.05) were found between chronic histopathologic grade and top-ranked radiomic features. Total parenchymal features were more strongly correlated than cortical ROI features, and texture features were more highly ranked. However, conventional imaging markers, including kidney length, were poorly correlated. Top-ranked individual radiomic features had areas under receiver operating characteristic curves (AUCs) of 0.65 to 0.74. Developed radiomics models for moderate-to-severe chronicity achieved AUCs of 0.89 (95% confidence interval [CI] 0.75-0.99) and 0.74 (95% CI 0.52-0.93) for total parenchymal and cortical ROI features, respectively. CONCLUSION: Significant historadiological correlations were identified between CT-based radiomic features and chronic histologic changes in native kidney biopsies. Our findings underscore the potential of CT-based radiomic features and their prediction model for the non-invasive assessment of kidney fibrosis.
Asunto(s)
Riñón , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Femenino , Masculino , Riñón/diagnóstico por imagen , Riñón/patología , Persona de Mediana Edad , Biopsia , Adulto , Insuficiencia Renal Crónica/diagnóstico por imagen , Insuficiencia Renal Crónica/patología , Anciano , Estudios Retrospectivos , Aprendizaje Profundo , RadiómicaRESUMEN
BACKGROUND: General anesthesia is often necessary for dental treatment of outpatients with mental disabilities. Rapid recovery and effective management of postoperative nausea and vomiting (PONV) are critical for outpatients. This study aimed to investigate the effect of transitioning from propofol to remimazolam with flumazenil reversal administered toward the end of surgery during propofol-based total intravenous anesthesia (TIVA) on recovery. METHODS: Adults with mental disabilities scheduled to undergo dental treatment were randomly assigned to receive either propofol-based TIVA (Group P) or propofol-remimazolam-based TIVA with flumazenil reversal (Group PR). Propofol was replaced with remimazolam 1 h before the end of surgery in Group PR; moreover, 0.5 mg of flumazenil was administered after the neuromuscular blockade reversal agent. The primary outcome was the duration of stay in the post-anesthesia care unit (PACU). The secondary outcomes included time to eye-opening, time to extubation, occurrence of PONV, and quality of recovery. RESULTS: Fifty-four patients were included in this study. The duration of stay in the PACU in Group PR was significantly shorter than that in Group P (mean difference, 8.7 min; confidence interval [95% CI], 3.3-14.2; P = 0.002). Group PR exhibited a shorter time to eye opening (mean difference, 5.4 min; 95% CI, 3.3-8.1; P < 0.001) and time to extubation (mean difference, 5.5 min; 95% CI, 3.6-7.9; P < 0.001) than Group P. Neither group required the administration of rescue analgesics, and the incidence of PONV was not reported. CONCLUSIONS: Transitioning from propofol to remimazolam 1 h before the end of surgery followed by flumazenil reversal reduced the duration of stay in the PACU and the time to eye opening and extubation without affecting the incidence of PONV and quality of recovery. TRIAL REGISTRATION NUMBER: Clinical Research Information Service (KCT0007794), Clinical trial first registration date: 12/10/2022.
Asunto(s)
Periodo de Recuperación de la Anestesia , Anestésicos Intravenosos , Flumazenil , Propofol , Humanos , Flumazenil/uso terapéutico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Benzodiazepinas/administración & dosificación , Náusea y Vómito Posoperatorios , Tiempo de Internación/estadística & datos numéricos , Pacientes AmbulatoriosRESUMEN
The field of genetic counseling (GC) in the Republic of Korea has evolved from a single medical doctor's clinic to a multidisciplinary service with medical geneticists and non-medical professionals working as a team. Here, we assessed the current status of GC in the Republic of Korea based on professional surveys from the perspective of laboratory physicians. An electronic survey was designed and conducted, with the respondents being 50 certified laboratory physicians who were members of the Korean Society for Genetic Diagnostics. Among the 50 respondents, 12 (24%) operated GC clinics. The number of sessions and cases of GC have been on the rise over the last few years, and counseling for cancer genetics was the most common request. Most respondents considered a good understanding of the genetic test and the ability to interpret the test results as strengths of laboratory physicians as medical geneticists, while the lack of clinical experience was a weakness. Education programs regarding laboratory physicians' needs should be provided for high-quality counseling. Lastly, improving the efficiency of GC by strengthening the workforce through a multidisciplinary team is necessary.
RESUMEN
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Asunto(s)
Antineoplásicos , Proliferación Celular , Colágeno , Células Madre Neoplásicas , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Madre Neoplásicas/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Animales , Movimiento Celular/efectos de los fármacos , Andamios del Tejido , Transición Epitelial-Mesenquimal/efectos de los fármacos , Organismos Acuáticos , Descubrimiento de Drogas/métodosRESUMEN
OBJECTIVE: This study aims to evaluate the effect of an adaptive nutritional and educational intervention for patients on hemodialysis (HD) in a routine care setting, using real-world data from electronic health records. METHODS: Decentralized clinical trial of seven HD facilities recruited patients who have been on HD for over 3 months (N = 153) for an 8-week adaptive intervention protocol. Patients were divided into four groups: (1) control (2) education intervention (3) meal intervention (4) education and meal interventions. Educational contents were digitally delivered via mobile phones and premade meals tailored on laboratory findings were home-delivered. Changes in serum electrolytes and malnutrition inflammation score (MIS) were analyzed. RESULTS: Meal intervention statistically significantly stabilized serum phosphorus level (ß = -0.81 mg/dL, 95% confidence interval = [-1.40, -0.22]) at week 8, with increased likelihood of being within target serum value range (odds ratio = 1.21, 95% confidence interval = [1.04, 1.40]). Meal group showed better nutritional status (MIS = 3.65) than the education group (MIS = 5.10) at week 8 (adjusted p < .05). No significant changes were observed in serum potassium level, depression, and self-efficacy. CONCLUSION: It was demonstrated that an adaptive meal intervention in a real-world care setting may benefit serum phosphorus control and nutritional status of patients on HD, without negative effect on depression levels or self-efficacy. More work is needed to develop an effective educational intervention.
Asunto(s)
Desnutrición , Estado Nutricional , Humanos , Inflamación/etiología , Desnutrición/prevención & control , Desnutrición/etiología , Fósforo , Diálisis Renal/efectos adversosRESUMEN
BACKGROUND: Since the emergence of hypervirulent strains of Clostridioides difficile, the incidence of C. difficile infections (CDI) has increased significantly. METHODS: To assess the incidence of CDI in Korea, we conducted a prospective multicentre observational study from October 2020 to October 2021. Additionally, we calculated the incidence of CDI from mass data obtained from the Health Insurance Review and Assessment Service (HIRA) from 2008 to 2020. RESULTS: In the prospective study with active surveillance, 30,212 patients had diarrhoea and 907 patients were diagnosed with CDI over 1,288,571 patient-days and 193,264 admissions in 18 participating hospitals during 3 months of study period; the CDI per 10,000 patient-days was 7.04 and the CDI per 1,000 admission was 4.69. The incidence of CDI was higher in general hospitals than in tertiary hospitals: 6.38 per 10,000 patient-days (range: 3.25-12.05) and 4.18 per 1,000 admissions (range: 1.92-8.59) in 11 tertiary hospitals, vs. 9.45 per 10,000 patient-days (range: 5.68-13.90) and 6.73 per 1,000 admissions (range: 3.18-15.85) in seven general hospitals. With regard to HIRA data, the incidence of CDI in all hospitals has been increasing over the 13-year-period: from 0.3 to 1.8 per 10,000 patient-days, 0.3 to 1.6 per 1,000 admissions, and 6.9 to 56.9 per 100,000 population, respectively. CONCLUSION: The incidence of CDI in Korea has been gradually increasing, and its recent value is as high as that in the United State and Europe. CDI is underestimated, particularly in general hospitals in Korea.