Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Curr Genomics ; 19(1): 4-11, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29491728

RESUMEN

The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

2.
Front Plant Sci ; 10: 297, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984209

RESUMEN

Plants adapt to adverse environmental conditions through physiological responses, such as induction of the abscisic acid signaling pathway, stomatal regulation, and root elongation. Altered gene expression is a major molecular response to adverse environmental conditions in plants. Several transcription factors function as master switches to induce the expression of stress-tolerance genes. To find out a master regulator for the cold stress tolerance in rice, we focused on functionally identifying DREB subfamily which plays important roles in cold stress tolerance of plants. Here, we characterized OsDREB1G (LOC_Os02g45450), a functionally unidentified member of the DREB1 subgroup. OsDREB1G is specifically induced under cold stress conditions among several abiotic stresses examined. This gene is dominantly expressed in leaf sheath, blade, node, and root. Transgenic rice overexpressing this gene exhibited strong cold tolerance and growth retardation, like transgenic rice overexpressing other OsDREB1 genes. However, unlike these rice lines, transgenic rice overexpressing OsDREB1G did not exhibit significant increases in drought or salt tolerance. Cold-responsive genes were highly induced in transgenic rice overexpressing DREB1G compared to wild type. In addition, OsDREB1G overexpression directly induced the expression of a reporter gene fused to the promoters of cold-induced genes in rice protoplasts. Therefore, OsDREB1G is a typical CBF/DREB1 transcription factor that specifically functions in the cold stress response. Therefore, OsDREB1G could be useful for developing transgenic rice with enhanced cold-stress tolerance.

3.
Rice (N Y) ; 12(1): 37, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31134357

RESUMEN

BACKGROUND: The core ABA signaling components functioning in stomatal closure/opening, namely ABA receptors, phosphatases, SnRK2s and SLAC1, are well characterized in Arabidopsis, but their functions in guard cells of rice have not been extensively studied. RESULTS: In this study, we confirmed that OsSLAC1, the rice homolog of AtSLAC1, is specifically expressed in rice guard cells. Among the rice SAPKs, SAPK10 was specifically expressed in guard cells. In addition, SAPK10 phosphorylated OsSLAC1 in vitro and transgenic rice overexpressing SAPK10 or OsSLAC1 showed significantly less water loss than control. Thus, those might be major positive signaling components to close stomata in rice. We identified that only OsPP2C50 and OsPP2C53 among 9 OsPP2CAs might be related with stomatal closure/opening signaling based on guard cell specific expression and subcellular localization. Transgenic rice overexpressing OsPP2C50 and OsPP2C53 showed significantly higher water loss than control. We also characterized the interaction networks between OsPP2C50 and OsPP2C53, SAPK10 and OsSLAC1 and found two interaction pathways among those signaling components: a hierarchical interaction pathway that consisted of OsPP2C50 and OsPP2C53, SAPK10 and OsSLAC1; and a branched interaction pathway wherein OsPP2C50 and OsPP2C53 interacted directly with OsSLAC1. CONCLUSION: OsPP2C50 and OsPP2C53 is major negative regulators of ABA signaling regarding stomata closing in rice. Those can regulate the OsSLAC1 directly or indirectly thorough SAPK10.

4.
Biotechnol Prog ; 23(2): 327-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17256967

RESUMEN

Catharanthus roseus has been well-known to contain indole alkaloids effective for treatment of diverse cancers. We examined the intracellular accumulation profiles of phenolic compounds in response to ectopic overexpression of tryptophan feedback-resistant anthranilate synthase holoenzyme (ASalphabeta) in C. roseus hairy roots. Among 13 phenolic compounds measured, 6 phenolic compounds were detected in late exponential phase ASalphabeta hairy roots. Uninduced and induced ASalphabeta hairy roots accumulated up to 1.2 and 4.5 mg/g DW over a 72-h period, respectively. Upon induction, in parallel with a rapid increase in tryptophan in the first 48 h, accumulation of phenolic compounds tended to increase to a maximum level (4.5 mg/g DW) at 48 h, after which phenolic levels decreased back to the uninduced level by 72 h. Naringin was a predominant form that comprised about 72% and 36% of the total content of phenolic compounds in the uninduced and induced lines, respectively. Upon induction, accumulation of catechin drastically increased with the highest level (3.6 mg/g) occurring at 48 h, whereas that of all others except for salicylic acid showed no statistical difference. Catechin is a final product of the flavonoid pathway, and thus metabolic flux into this pathway is transiently increased by overexpression of AS. Like catechin, salicylic acid is very sensitive to induction as it began to increase to 5-fold within 4 h of induction, but unlike catechin, no significant accumulation of salicylic acid was noted after 4 h of induction. The results suggest differential regulation of this particular biosynthesis branch within the phenolic pathway.


Asunto(s)
Antranilato Sintasa/metabolismo , Catharanthus/metabolismo , Indoles/metabolismo , Fenoles/farmacocinética , Raíces de Plantas/metabolismo , Transducción de Señal/fisiología , Triptófano/metabolismo , Antranilato Sintasa/genética , Catharanthus/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Ingeniería de Proteínas/métodos , Triptófano/genética
5.
J Agric Food Chem ; 55(12): 4802-9, 2007 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-17516656

RESUMEN

Barley and its products are good sources of antioxidants. This experiment was conducted to examine the classification and concentration of phenolic compounds, proanthocyanidins, and anthocyanins in 127 lines of colored barley. Their relationship with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was also examined. Barley was placed into seven groups using the colorimeter: hulled (black 1, black 2, black 3, and purple) and unhulled (black, blue, and purple). The contents of phenolic compounds and anthocyanins were analyzed by using HPLC. The average content of phenolic compounds in unhulled barley groups (268.6 microg/g) was higher than that in hulled (207.0 microg/g) (P > 0.05). The proanthocyanidins content was determined by modified vanillin assay. The average content of proanthocyanidins was significantly higher in purple and blue barley groups compared with black (P < 0.05). The content of anthocyanins varied from 13.0 to 1037.8 microg/g. Purple and blue barley groups contained higher average contents of anthocyanins than black (P < 0.05). The most common anthocyanin in the purple barley groups was cyanidin 3-glucoside, whereas delphinidin 3-glucoside was the most abundant anthocyanin in the blue and black groups. In colored barley, DPPH radical scavenging activity had high positive correlation to the content of phenolic compounds and proanthocyanidins.


Asunto(s)
Antocianinas/análisis , Antioxidantes/análisis , Hordeum/química , Fenoles/análisis , Semillas/química , Antocianinas/química , Antioxidantes/farmacología , Color
6.
Front Plant Sci ; 8: 772, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553305

RESUMEN

Stomata are the main gateways for water and air transport between leaves and the environment. Inward-rectifying potassium channels regulate photo-induced stomatal opening. Rice contains three inward rectifying shaker-like potassium channel proteins, OsKAT1, OsKAT2, and OsKAT3. Among these, only OsKAT2 is specifically expressed in guard cells. Here, we investigated the functions of OsKAT2 in stomatal regulation using three dominant negative mutant proteins, OsKAT2(T235R), OsKAT2(T285A) and OsKAT2(T285D), which are altered in amino acids in the channel pore and at a phosphorylation site. Yeast complementation and patch clamp assays showed that all three mutant proteins lost channel activity. However, among plants overexpressing these mutant proteins, only plants overexpressing OsKAT2(T235R) showed significantly less water loss than the control. Moreover, overexpression of this mutant protein led to delayed photo-induced stomatal opening and increased drought tolerance. Our results indicate that OsKAT2 is an inward- rectifying shaker-like potassium channel that mainly functions in stomatal opening. Interestingly, overexpression of OsKAT2(T235R) did not cause serious defects in growth or yield in rice, suggesting that OsKAT2 is a potential target for engineering plants with improved drought tolerance without yield penalty.

7.
Front Plant Sci ; 6: 614, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300907

RESUMEN

The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene functions using transient gene expression for rice protoplasts (TGERP) because it is instantaneous and convenient system. Firstly, in order to monitor the ABA signaling output, we developed reporter system named pRab16A-fLUC which consists of Rab16A promoter of rice and luciferase gene. It responses more rapidly and sensitively to ABA than pABRC3-fLUC that consists of ABRC3 of HVA1 promoter in TGERP. We screened the reporter responses for over-expression of each signaling components from group A OsbZIPs to OsPYL/RCARs with or without ABA in TGERP. OsbZIP46 induced reporter most strongly among OsbZIPs tested in the presence of ABA. SAPKs could activate the OsbZIP46 even in the ABA independence. Subclass A OsPP2C6 and -8 almost completely inhibited the OsbZIP46 activity in the different degree through the SAPK9. Lastly, OsPYL/RCAR2 and -5 rescued the OsbZIP46 activity in the presence of SAPK9 and OsPP2C6 dependent on ABA concentration and expression level. By using TGERP, we could characterize successfully the effects of ABA dependent gene expression signaling components in rice. In conclusion, TGERP represents very useful technology to study systemic functional genomics in rice or other monocots.

8.
PLoS One ; 8(8): e72541, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967316

RESUMEN

Potassium is the most abundant cation and a myriad of transporters regulate K(+) homeostasis in plant. Potassium plays a role as a major osmolyte to regulate stomatal movements that control water utility of land plants. Here we report the characterization of two inward rectifying shaker-like potassium channels, OsKAT2 and OsKAT3, expressed in guard cell of rice plants. While OsKAT2 showed typical potassium channel activity, like that of Arabidopsis KAT1, OsKAT3 did not despite high sequence similarity between the two channel proteins. Interestingly, the two potassium channels physically interacted with each other and such interaction negatively regulated the OsKAT2 channel activity in CHO cell system. Furthermore, deletion of the C-terminal domain recovered the channel activity of OsKAT3, suggesting that the C-terminal region was regulatory domain that inhibited channel activity. Two homologous channels with antagonistic interaction has not been previously reported and presents new information for potassium channel regulation in plants, especially in stomatal regulation.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Células Vegetales/metabolismo , Canales de Potasio de Rectificación Interna/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Especificidad de Órganos , Oryza/clasificación , Filogenia , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Levaduras/genética , Levaduras/metabolismo
9.
Plant Cell Rep ; 27(3): 425-34, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17851663

RESUMEN

We report high frequencies of embryo production and plant regeneration through isolated microspore culture of hot pepper (Capsicum annuum L.). Microspores cultured in modified NLN medium (NLNS) divided and developed to embryos. Globular and heart-shaped embryos were observed from 3 weeks after the beginning of culture, and many embryos reached the cotyledonary stage after 4 weeks of culture. These cotyledonary embryos developed to plantlets after transfer to solid B5 basal medium. We also optimized conditions for embryo production by varying the pretreatment media, the carbon sources, and culture densities. Heat shock treatment in sucrose-starvation medium was more effective than in B5 medium. Direct comparisons of sucrose and maltose as carbon sources clearly demonstrated the superiority of sucrose compared to maltose, with the highest frequency of embryo production being obtained in 9% (w/v) sucrose. Microspore plating density was critical for efficient embryonic induction and development, with an optimal plating density of 8 x 10(4)-10 x 10(4)/ml. Under our optimized culture conditions, we obtained over 54 embryos, and an average of 5.5 cotyledonary embryos when 10 x 10(4) microspores were grown on an individual plate.


Asunto(s)
Capsicum/embriología , Polen/embriología , Capsicum/genética , Capsicum/fisiología , Técnicas de Cultivo de Célula/métodos , Haploidia , Polen/citología , Polen/genética , Regeneración/genética , Regeneración/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA