Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36850514

RESUMEN

With the development of the Internet and communication technologies, the types of services provided by multitier Web systems are becoming more diverse and complex compared to those of the past. Ensuring a continuous availability of business services is crucial for multitier Web system providers, as service performance issues immediately affect customer experience and satisfaction. Large companies attempt to monitor the system performance indicator (SPI) that summarizes the status of multitier Web systems to detect performance anomalies at an early stage. However, the current anomaly detection methods are designed to monitor a single specific SPI. Moreover, the existing approaches consider performance anomaly detection and its root cause analysis separately, thereby aggravating the burden of resolving the performance anomaly. To support the system provider in diagnosing the performance anomaly, we propose an advanced causative metric analysis (ACMA) framework. First, we draw out 191 performance metrics (PMs) closely related to the target SPI. Among these PMs, the ACMA determines 62 vital PMs that have the most influence on the variance of the target SPI using several statistical methods. Then, we implement a performance anomaly detection model to identify the causative metrics (CMs) between the vital PMs using random forest regression. Even if the target SPI changes, our detection model does not require any change in its model structure and can derive closely related PMs of the target SPI. Based on our experiments, wherein we applied the ACMA to the business services in an enterprise system, we observed that the proposed ACMA could correctly detect various performance anomalies and their CMs.

2.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521730

RESUMEN

The determination of a suitable sensor location on quadrotor drones is a very important issue for chemical reconnaissance platforms because the magnitude and direction of air velocity is different for each location. In this study, we investigated a customized chemical reconnaissance system consisting of a quadrotor drone and a chip-sized chemical sensor for detecting dimethyl-methylphosphonate (DMMP; a Sarin simulant) and investigated the chemical detection properties with respect to the sensor position through indoor experiments and particle image velocimetry (PIV) analysis of the system. The PIV results revealed an area free of vortex-vortex interaction between the drone rotors, where there was distinctly stable and uniform chemical detection of DMMP. The proposed chemical reconnaissance system was found to be realistic for practical application.

3.
Sensors (Basel) ; 18(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380798

RESUMEN

Mobile Crowdsensing (MCS) is a paradigm for collecting large-scale sensor data by leveraging mobile devices equipped with small and low-powered sensors. MCS has recently received considerable attention from diverse fields, because it can reduce the cost incurred in the process of collecting a large amount of sensor data. However, in the task assignment process in MCS, to allocate the requested tasks efficiently, the workers need to send their specific location to the requester, which can raise serious location privacy issues. In this paper, we focus on the methods for publishing differentially a private spatial histogram to guarantee the location privacy of the workers. The private spatial histogram is a sanitized spatial index where each node represents the sub-regions and contains the noisy counts of the objects in each sub-region. With the sanitized spatial histograms, it is possible to estimate approximately the number of workers in the arbitrary area, while preserving their location privacy. However, the existing methods have given little concern to the domain size of the input dataset, leading to the low estimation accuracy. This paper proposes a partitioning technique SAGA (Skew-Aware Grid pArtitioning) based on the hotspots, which is more appropriate to adjust the domain size of the dataset. Further, to optimize the overall errors, we lay a uniform grid in each hotspot. Experimental results on four real-world datasets show that our method provides an enhanced query accuracy compared to the existing methods.


Asunto(s)
Algoritmos , Teléfono Celular , Recolección de Datos , Bases de Datos como Asunto
4.
Nano Lett ; 16(7): 4508-15, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27304752

RESUMEN

The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure.

5.
Nano Lett ; 15(11): 7273-80, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26455592

RESUMEN

Enhancement of the fluorescence intensity of quantum dot (QD)-polymer nanocomposite arrays is an important issue in QD studies because of the significant reduction of fluorescence signals of such arrays due to nonradiative processes in densely packed polymer chains in solid films. In this study, we enhance the fluorescence intensity of such arrays without significantly reducing their optical transparency. Enhanced fluorescence is achieved by hybridizing ultrathin plasmonic Au nanowalls onto the sidewalls of the arrays via single-step patterning and hybridization. The plasmonic Au nanowall induces metal-enhanced fluorescence, resulting in a maximum 7-fold enhancement of the fluorescence signals. We also prepare QD nanostructures of various shapes and sizes by controlling the dry etching time. In the near future, this facile approach can be used for fluorescence enhancement of colloidal QDs with plasmonic hybrid structures. Such structures can be used as optical substrates for imaging applications and for fabrication of QD-LED devices.

6.
Nano Lett ; 15(11): 7552-7, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26437237

RESUMEN

Developing large-area, single domain of organic soft-building blocks such as block copolymers, colloids, and supramolecular materials is one of the most important issues in the materials science and nanotechnology. Owing to their small sizes, complex molecular architectures, and high mobility, supramolecular materials are not well-suited for building large area, single domain structures. In the described study, a single domain of supramolecular columnar dendrimers was created over large area. The columnar structures in these domains have smaller (4.5 nm) diameters, higher area densities (ca. 36 Tera-dots/in(2)) and larger domains (>0.1 × 0.1 mm(2)) than those of all existing BCP and colloidal assemblies. By simply annealing dendrimer thin films between two flat solid surfaces, single domains of hexagonal columnar structures are created over large macroscopic areas. Observations made in this effort should serve as the foundation for the design of new routes for bottom-up lithography based on supramolecular building blocks.

7.
Nano Lett ; 15(1): 229-34, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494827

RESUMEN

Because the properties of molybdenum disulfide (MoS2) are strongly influenced by the sizes and boundaries of its domains, the direct visualization of large-area MoS2 domains is one of the most important challenges in MoS2 research. In the current study, we developed a simple and rapid method to observe and determine the boundaries of MoS2 domains. The technique, which depends on observations of nematic liquid crystal textures on the MoS2 surface, does not damage the sample and is not limited by domain size. Thus, this approach should significantly aid not only efforts aimed at gaining an understanding of the relationships between grain boundaries and properties of MoS2 but also those focusing on how domain sizes are controlled during large-area synthesis.

8.
Nano Lett ; 14(10): 5941-7, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25191976

RESUMEN

One of the most important issues in the development of gas sensors for breath analysis is the fabrication of gas sensor arrays that possess different responses for recognizing patterns for volatile organic compounds (VOCs). Here, we develop a high-performance chemiresistor with a tunable sensor response and high sensitivity for representative VOC groups by using molybdenum disulfide (MoS2) and by conjugating a thiolated ligand (mercaptoundecanoic acid (MUA)) to MoS2 surface. Primitive and MUA-conjugated MoS2 sensing channels exhibit distinctly different sensor responses toward VOCs. In particular, the primitive MoS2 sensor presents positive responses for oxygen-functionalized VOCs, while the MUA-conjugated MoS2 sensor presents negative responses for the same analytes. Such characteristic sensor responses demonstrate that ligand conjugation successfully adds functionality to a MoS2 matrix. Thus, this will be a promising approach to constructing a versatile sensor array, by conjugating a wide variety of thiolated ligands on the MoS2 surface. Furthermore, these MoS2 sensors in this study exhibit high sensitivity to representative VOCs down to a concentration of 1 ppm. This approach to fabricating a tunable and sensitive VOC sensor may lead to a valuable real-world application for lung cancer diagnosis by breath analysis.

9.
ACS Omega ; 8(20): 18058-18063, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251177

RESUMEN

Developing an accurate chemical warfare agent (CWA) vapor generator is critical for homeland security because it enables real-time monitoring of target agent concentration for testing and evaluation. We designed and built an elaborate CWA vapor generator that offers reliable long-term stability and real-time monitoring capabilities by coupling it with Fourier transform infrared (FT-IR) spectroscopy. We evaluated the reliability and stability of the vapor generator using a gas chromatography-flame ion detector (GC-FID) and conducted a comparison between the experimental and theoretical results of sulfur mustard (HD, bis-2-chloroethylsulfide), a real CWA, at concentrations ranging from 1 to 5 ppm. Our FT-IR-coupled vapor generation system showed real-time monitoring ability, which enables rapid and accurate evaluation of chemical detectors. The vapor generation system was able to generate CWA vapor continuously for over 8 h, demonstrating its long-term vapor generation capability. In addition, we vaporized another representative CWA, viz., GB (Sarin, propan-2-yl ethylphosphonofluoridate), and conducted real-time monitoring of GB vapor concentration with high accuracy. This versatile vapor generator approach can enable the rapid and accurate evaluation of CWAs for homeland security against chemical threats and can be used in constructing a versatile real-time monitoring vapor generation system for CWAs.

10.
J Nanosci Nanotechnol ; 12(2): 1563-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22630001

RESUMEN

In this study, the FeS2 fine compound powders were synthesized by mechanical alloying (MA) for 15 hrs and stearic acid was added as PCA (Process Control Agent) to prevent the excessive cold welding and agglomeration. For the purpose of ulteriorly reducing the particle size to improve the contact areas between the active materials and conducting agents, the wet ball milling process was applied by employing normal hexane (C6H14) as the milling solvent. The mean particle size of FeS2 powders about 1.14 microm were obtained after 24 hrs wet ball milling. The powders were characterized by FE-SEM, XRD, TEM and EDS. To compare the influence of particle size on the properties of charge/discharge, the same electrolyte was employed for both tests by dissolving 1M NaCF3SO3 (sodium trifluoromethanesulfonate) in a liquid of TEGDME (tetraethylene glycol dimethylether). The first discharge capacity of Na/FeS2 cell made by dry ball milled powders was 440 mAh/g with a plateau potential at approximately 1.25 V versus Na/Na+ and 260 mAh/g at the 25th cycle at room temperature. Meanwhile, the initial discharge capacity of Na/FeS2 cell made by wet ball milled powders was 614 mAh/g with the same discharge plateau potential and retained 385 mAh/g at the 25th cycle. And the discharge capacity for wet milled system decreased continuously by repeated charge/discharge cycling in the first 20 cycles and has little change after 60 cycles, which means the good cycling properties, remaining half of its initial discharge capacity of 320 mAh/g even after 100 cycles.

11.
J Nanosci Nanotechnol ; 11(1): 484-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446481

RESUMEN

Sulfur electrode was prepared using sulfur-CNT composite powder. The sulfur electrode showed homogenous mixture of sulfur and the CNTs with a network structure. We investigated on the discharge behavior and cycling property of lithium/sulfur cell using sulfur electrodes with CNTs as unique conducting agents. The discharge capacity of the Li/TEGDME/S cell was about 1227 mAh/g-sulfur for the first cycle and decreased to 155 mAh/g-sulfur after 14 cycles.

12.
ACS Omega ; 6(24): 16159-16164, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179661

RESUMEN

Unmanned aerial vehicles (UAVs) have been used as a new chemical reconnaissance platform in chemical, biological, radiological, and nuclear detection and in industrial monitoring and environmental research, owing to their mobility, unconventional accessibility, and safety. Based on the UAV's payload and operational time considerations, the ultralight chip-sized chemical sensor is the most promising candidate for chemical reconnaissance among various chemical sensors. To optimize the UAV's chip-sensor performance, realistic outdoor tests of chemical sensors during UAV flights have to be conducted to verify their performances. In this study, indoor and outdoor experiments were conducted with a carbon nanotube (CNT)-based chip sensor installed on the UAV to detect dimethyl methylphosphonates (DMMPs), commonly used as chemical warfare agent simulants. Based on the indoor tests, DMMP concentrations and the position/direction of the CNT sensor were analyzed to optimize the sensing performances during UAV operations. Based on outdoor tests, we confirmed that the chemical sensor mounted on the UAV could detect DMMP gases by moving designated pathways in realistic conditions.

13.
ACS Omega ; 4(16): 16768-16773, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646221

RESUMEN

Early alerts for avoiding exposure to toxic chemical threats are critical applications of sensors to protect both military troops and civilian populations. Among the various sensing techniques developed, the passive Fourier transform-infrared (FT-IR) spectroscopy method has been demonstrated to work well as a remote (kilometer-scale) sensor for such early-alert systems. The passive type FT-IR detector is capable of mobile detection of toxic gas clouds because of its small-scale interferometer and optical instruments. In this article, real-time FT-IR measurements of ammonia (NH3) in 76 mm artillery smoke are reported using a commercial remote sensor and scored by a real-time analysis conducted using a custom algorithm based on the generalized likelihood ratio test (GLRT). Using these methods, we measured the real-time change in the ammonia spectrum and GLRT scores against concrete and forest backgrounds following artillery propellant detonation. We confirmed that the GLRT score characteristics depend on the background and found that the effect of rapid heat transfer from the propellant detonation to the ammonia was detected in the accumulated ammonia FT-IR spectra.

14.
Adv Mater ; 30(20): e1706851, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603454

RESUMEN

Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long-term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human-adaptive and skin-attachable biosensor platform for daily use and early diagnosis.

15.
ACS Sens ; 2(1): 183-189, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28722426

RESUMEN

Controlling the charge concentrations of two-dimensional (2D) materials is a critical requirement for realizing versatility and potential application of these materials in high-performance electronics and sensors. In order to exploit the novel chemical-sensing characteristics of 2D materials for sensitive and selective sensors, various functionalization methods are needed to ensure efficient doping of channels based on 2D materials. In the present study, the gas-sensing performance of MoS2 has been significantly enhanced by controlled Au nanoparticle functionalization. By using the difference in reduction potential between the Au precursor and MoS2 work functions, MoS2 prepared by chemical exfoliation process was decorated with nanoparticles with sizes of tens of nanometers. The n-doping effect of Au nanoparticles was observed, that is, these particles were found to have facilitated in electron charge transfer from Au to MoS2. The controlled n-doping effect enables the tuning of the sensing of hydrocarbon-based volatile organic compounds (VOCs) and oxygen-functionalized compounds by MoS2. A significant step has therefore been made with this study toward solving the limitations imposed by previous MoS2-based sensors, which mostly produce a single response to various VOC analytes. This controllable chemical doping process for tuning the VOC-sensing performance of MoS2 can eventually be used in early detection using multichannel sensing systems that have different responses and recognize patterns for target analytes.

16.
ACS Appl Mater Interfaces ; 9(1): 1021-1028, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27966907

RESUMEN

Cost effective scalable method for uniform film formation is highly demanded for the emerging applications of 2D transition metal dichalcogenides (TMDs). We demonstrate a reliable and fast interfacial self-assembly of TMD thin films and their heterostructures. Large-area 2D TMD monolayer films are assembled at air-water interface in a few minutes by simple addition of ethyl acetate (EA) onto dilute aqueous dispersions of TMDs. Assembled TMD films can be directly transferred onto arbitrary nonplanar and flexible substrates. Precise thickness controllability of TMD thin films, which is essential for thickness-dependent applications, can be readily obtained by the number of film stacking. Most importantly, complex structures such as laterally assembled 2D heterostructures of TMDs can be assembled from mixture solution dispersions of two or more different TMDs. This unusually fast interfacial self-assembly could open up a novel applications of 2D TMD materials with precise tunability of layer number and film structures.

17.
Adv Mater ; 29(13)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28185323

RESUMEN

An artificial ionic mechanotransducer skin with an unprecedented sensitivity over a wide spectrum of pressure by fabricating visco-poroelastic nanochannels and microstructured features, directly mimicking the physiological tactile sensing mechanism of Piezo2 protein is demonstrated. This capability enables voice identification, health monitoring, daily pressure measurements, and even measurements of a heavy weight beyond capabilities of human skin.


Asunto(s)
Materiales Biomiméticos , Canales Iónicos/metabolismo , Mecanotransducción Celular , Células de Merkel/metabolismo , Piel Artificial , Acústica , Animales , Materiales Biomiméticos/química , Elastómeros/química , Humanos , Canales Iónicos/química , Líquidos Iónicos/química , Iones/química , Enfermedades de la Laringe/diagnóstico , Enfermedades de la Laringe/fisiopatología , Ensayo de Materiales , Mecanotransducción Celular/fisiología , Monitoreo Fisiológico , Nanoestructuras/química , Porosidad , Presión , Pulso Arterial , Compuestos de Plata/química , Tacto/fisiología , Sustancias Viscoelásticas/química
18.
Adv Mater ; 28(32): 7020-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27283330

RESUMEN

Superior chemical sensing performance of black phosphorus (BP) is demonstrated by comparison with MoS2 and graphene. Dynamic sensing measurements of multichannel detection show that BP displays highly sensitive, selective, and fast-responsive NO2 sensing performance compared to the other representative 2D sensing materials.

19.
ACS Nano ; 9(9): 9314-21, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26312559

RESUMEN

In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

20.
Adv Healthc Mater ; 3(1): 59-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23868871

RESUMEN

Stable pH is an established biomarker of health, relevant to all tissues of the body, including the heart. Clinical monitoring of pH in a practical manner, with high spatiotemporal resolution, is particularly difficult in organs such as the heart due to its soft mechanics, curvilinear geometry, heterogeneous surfaces, and continuous, complex rhythmic motion. The results presented here illustrate that advanced strategies in materials assembly and electrochemical growth can yield interconnected arrays of miniaturized IrOx pH sensors encapsulated in thin, low-modulus elastomers to yield conformal monitoring systems capable of noninvasive measurements on the surface of the beating heart. A thirty channel custom data acquisition system enables spatiotemporal pH mapping with a single potentiostat. In vitro testing reveals super-Nernstian sensitivity with excellent uniformity (69.9 ± 2.2 mV/pH), linear response to temperature (-1.6 mV °C(-1) ), and minimal influence of extracellular ions (<3.5 mV). Device examples include sensor arrays on balloon catheters and on skin-like stretchable membranes. Real-time measurement of pH on the surfaces of explanted rabbit hearts and a donated human heart during protocols of ischemia-reperfusion illustrate some of the capabilities. Envisioned applications range from devices for biological research, to surgical tools and long-term implants.


Asunto(s)
Electrónica , Miocardio/metabolismo , Animales , Cateterismo Cardíaco , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Iones/química , Iones/metabolismo , Isquemia/metabolismo , Isquemia/patología , Microelectrodos , Miocardio/química , Prótesis e Implantes , Conejos , Reperfusión , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA