Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(7): 1553-65, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26073944

RESUMEN

Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. Yet, essentially all HSC studies have been performed with cells isolated and processed in non-physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term extraphysiologic oxygen shock/stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow and cord blood are routinely underestimated. We linked ROS production and induction of the mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of EPHOSS. The MPTP inhibitor cyclosporin A protects mouse bone marrow and human cord blood HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may be clinically advantageous for transplantation.


Asunto(s)
Médula Ósea , Sangre Fetal/citología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Femenino , Trasplante de Células Madre Hematopoyéticas/instrumentación , Células Madre Hematopoyéticas/citología , Humanos , Hipoxia , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498222

RESUMEN

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Asunto(s)
Cisplatino , Neoplasias , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos , Microtúbulos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina Tiolesterasa
3.
Biochem Biophys Res Commun ; 682: 27-38, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37801987

RESUMEN

The solute carrier family 35 F2 (SLC35F2) belongs to membrane-bound carrier proteins that are associated with multiple cancers. The main factor that determines cancer progression is the expression level of SLC35F2. Thus, identifying the E3 ligase that controls SLC35F2 protein abundance in cancer cells is critical. Here, we identified ßTrCP1 interacting with and reducing the SLC35F2 protein level. ßTrCP1 signals SLC35F2 protein ubiquitination and reduces SLC35F2 protein half-life. The mRNA expression pattern between ßTrCP1 and SLC35F2 across a panel of cancer cell lines showed a negative correlation. Additionally, the depletion of ßTrCP1 accumulated SLC35F2 protein and promoted SLC35F2-mediated cell growth, migration, invasion, and colony formation ability in HeLa cells. Overall, we demonstrate that ßTrCP1 acts as a tumor suppressor by controlling SLC35F2 protein abundance in cancer cells. The depletion of ßTrCP1 promotes SLC35F2-mediated carcinogenesis. Thus, we envision that ßTrCP1 may be a potential target for cancer therapeutics.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Células HeLa , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Neoplasias/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
4.
Cell Biol Toxicol ; 39(5): 2295-2310, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35449354

RESUMEN

Phenylalanine hydroxylase (PAH) is the key enzyme in phenylalanine metabolism, deficiency of which is associated with the most common metabolic phenotype of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). A bulk of PKU disease-associated missense mutations in the PAH gene have been studied, and the consequence of each PAH variant vary immensely. Prior research established that PKU-associated variants possess defects in protein folding with reduced cellular stability leading to rapid degradation. However, recent evidence revealed that PAH tetramers exist as a mixture of resting state and activated state whose transition depends upon the phenylalanine concentration and certain PAH variants that fail to modulate the structural equilibrium are associated with PKU disease. Collectively, these findings framed our understanding of the complex genotype-phenotype correlation in PKU. In the current study, we substantiate a link between PAH protein stability and its degradation by the ubiquitin-mediated proteasomal degradation system. Here, we provide an evidence that PAH protein undergoes ubiquitination and proteasomal degradation, which can be reversed by deubiquitinating enzymes (DUBs). We identified USP19 as a novel DUB that regulates PAH protein stability. We found that ectopic expression of USP19 increased PAH protein level, whereas depletion of USP19 promoted PAH protein degradation. Our study indicates that USP19 interacts with PAH and prevents polyubiquitination of PAH subsequently extending the half-life of PAH protein. Finally, the increase in the level of PAH protein by the deubiquitinating activity of USP19 resulted in enhanced metabolic function of PAH. In summary, our study identifies the role of USP19 in regulating PAH protein stability and promotes its metabolic activity. Graphical highlights 1. E3 ligase Cdh1 promotes PAH protein degradation leading to insufficient cellular amount of PAH causing PKU. 2. A balance between E3 ligase and DUB is important to regulate the proteostasis of PAH. 3. USP19 deubiquitinates and stabilizes PAH further protecting it from rapid degradation. 4. USP19 increases the enzymatic activity of PAH, thus maintaining normal Phe levels.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fenilcetonurias/genética , Ubiquitina-Proteína Ligasas/metabolismo , Estabilidad Proteica , Fenilalanina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo
5.
Mol Ther ; 30(11): 3414-3429, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918893

RESUMEN

Survivin is a component of the chromosomal passenger complex, which includes Aurora B, INCENP, and Borealin, and is required for chromosome segregation and cytokinesis. We performed a genome-wide screen of deubiquitinating enzymes for survivin. For the first time, we report that USP19 has a dual role in the modulation of mitosis and tumorigenesis by regulating survivin expression. Our results found that USP19 stabilizes and interacts with survivin in HCT116 cells. USP19 deubiquitinates survivin protein and extends its half-life. We also found that USP19 functions as a mitotic regulator by controlling the downstream signaling of survivin protein. Targeted genome knockout verified that USP19 depletion leads to several mitotic defects, including cytokinesis failure. In addition, USP19 depletion results in significant enrichment of apoptosis and reduces the growth of tumors in the mouse xenograft. We envision that simultaneous targeting of USP19 and survivin in oncologic drug development would increase therapeutic value and minimize redundancy.


Asunto(s)
Carcinogénesis , Endopeptidasas , Survivin , Animales , Humanos , Ratones , Carcinogénesis/genética , Enzimas Desubicuitinizantes , Endopeptidasas/genética , Survivin/genética , Mitosis
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055037

RESUMEN

The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular/genética , Enzimas Desubicuitinizantes/genética , Estudio de Asociación del Genoma Completo/métodos , Osteogénesis/genética , Tioléster Hidrolasas/genética , Enzimas Desubicuitinizantes/metabolismo , Regulación de la Expresión Génica , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteolisis , Medicina Regenerativa , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación
7.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445214

RESUMEN

Deubiquitinating enzymes play key roles in the precise modulation of Aurora B-an essential cell cycle regulator. The expression of Aurora B increases before the onset of mitosis and decreases during mitotic exit; an imbalance in these levels has a severe impact on the fate of the cell cycle. Dysregulation of Aurora B can lead to aberrant chromosomal segregation and accumulation of errors during mitosis, eventually resulting in cytokinesis failure. Thus, it is essential to identify the precise regulatory mechanisms that modulate Aurora B levels during the cell division cycle. Using a deubiquitinase knockout strategy, we identified USP48 as an important candidate that can regulate Aurora B protein levels during the normal cell cycle. Here, we report that USP48 interacts with and stabilizes the Aurora B protein. Furthermore, we showed that the deubiquitinating activity of USP48 helps to maintain the steady-state levels of Aurora B protein by regulating its half-life. Finally, USP48 knockout resulted in delayed progression of cell cycle due to accumulation of mitotic defects and ultimately cytokinesis failure, suggesting the role of USP48 in cell cycle regulation.


Asunto(s)
Aurora Quinasa B/metabolismo , Citocinesis , Mitosis , Proteasas Ubiquitina-Específicas/metabolismo , Aurora Quinasa B/genética , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Humanos , Proteasas Ubiquitina-Específicas/genética
8.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070420

RESUMEN

Oct4 is an important mammalian POU family transcription factor expressed by early human embryonic stem cells (hESCs). The precise level of Oct4 governs the pluripotency and fate determination of hESCs. Several post-translational modifications (PTMs) of Oct4 including phosphorylation, ubiquitination, and SUMOylation have been reported to regulate its critical functions in hESCs. Ubiquitination and deubiquitination of Oct4 should be well balanced to maintain the pluripotency of hESCs. The protein turnover of Oct4 is regulated by several E3 ligases through ubiquitin-mediated degradation. However, reversal of ubiquitination by deubiquitinating enzymes (DUBs) has not been reported for Oct4. In this study, we generated a ubiquitin-specific protease 3 (USP3) gene knockout using the CRISPR/Cas9 system and demonstrated that USP3 acts as a protein stabilizer of Oct4 by deubiquitinating Oct4. USP3 interacts with endogenous Oct4 and co-localizes in the nucleus of hESCs. The depletion of USP3 leads to a decrease in Oct4 protein level and loss of pluripotent morphology in hESCs. Thus, our results show that USP3 plays an important role in controlling optimum protein level of Oct4 to retain pluripotency of hESCs.


Asunto(s)
Carcinoma Embrionario/genética , Enzimas Desubicuitinizantes/metabolismo , Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Enzimas Desubicuitinizantes/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Técnicas de Inactivación de Genes , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Análisis de la Célula Individual , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/genética
9.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071237

RESUMEN

Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.


Asunto(s)
Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteasas Ubiquitina-Específicas/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Apoptosis , Sistemas CRISPR-Cas , Carcinogénesis/genética , Ciclo Celular , Puntos de Control del Ciclo Celular , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Oncogenes , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Fosfatasas cdc25/genética
10.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209900

RESUMEN

Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Esfingosina/análogos & derivados , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Embrionarias Humanas/fisiología , Humanos , Lípidos/química , Lípidos/farmacología , Miocitos Cardíacos/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esfingosina/química , Esfingosina/farmacología
11.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679806

RESUMEN

A delicate intracellular balance among protein synthesis, folding, and degradation is essential to maintaining protein homeostasis or proteostasis, and it is challenged by genetic and environmental factors. Molecular chaperones and the ubiquitin proteasome system (UPS) play a vital role in proteostasis for normal cellular function. As part of protein quality control, molecular chaperones recognize misfolded proteins and assist in their refolding. Proteins that are beyond repair or refolding undergo degradation, which is largely mediated by the UPS. The importance of protein quality control is becoming ever clearer, but it can also be a disease-causing mechanism. Diseases such as phenylketonuria (PKU) and hereditary tyrosinemia-I (HT1) are caused due to mutations in PAH and FAH gene, resulting in reduced protein stability, misfolding, accelerated degradation, and deficiency in functional proteins. Misfolded or partially unfolded proteins do not necessarily lose their functional activity completely. Thus, partially functional proteins can be rescued from degradation by molecular chaperones and deubiquitinating enzymes (DUBs). Deubiquitination is an important mechanism of the UPS that can reverse the degradation of a substrate protein by covalently removing its attached ubiquitin molecule. In this review, we discuss the importance of molecular chaperones and DUBs in reducing the severity of PKU and HT1 by stabilizing and rescuing mutant proteins.


Asunto(s)
Fenilcetonurias/metabolismo , Proteolisis , Tirosinemias/metabolismo , Animales , Enzimas Desubicuitinizantes/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fenilcetonurias/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Tirosinemias/patología , Ubiquitinación
12.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138315

RESUMEN

Ubiquitination and deubiquitination play a fundamental role in the signaling pathways associated with innate and adaptive immune responses. Macrophages are key sentinels for the host defense, triggering antiviral and inflammatory responses against various invading pathogens. Macrophages recognize the genetic material of these pathogens as pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) through the activation of its pattern recognition receptors (PRRs), initiating the cascade of immune signaling, which leads to the production of pro- and anti-inflammatory cytokines that initiates the appropriate immune response. Macrophage-mediated immune response is highly regulated and tightly controlled by the ubiquitin system since its abnormal activation or dysregulation may result in the severe pathogenesis of numerous inflammatory and autoimmune diseases. Deubiquitinating enzymes (DUBs) play a crucial role in reversing the ubiquitination and controlling the magnitude of the immune response. During infection, pathogens manipulate the host defense system by regulating DUBs to obtain nutrients and increase proliferation. Indeed, the regulation of DUBs by small molecule inhibitors has been proposed as an excellent way to control aberrant activation of immune signaling molecules. This review is focused on the complex role of DUBs in macrophage-mediated immune response, exploring the potential use of DUBs as therapeutic targets in autoimmune and inflammatory diseases by virtue of small molecule DUB inhibitors.


Asunto(s)
Inmunidad Innata/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Ubiquitina/metabolismo , Virosis/inmunología , Virus/inmunología , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología , Ubiquitinación , Virosis/metabolismo , Virosis/patología
13.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218190

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Asunto(s)
Antígenos CD/genética , Proteínas Cdh1/genética , Hidrolasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Hidrolasas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
14.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260674

RESUMEN

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by the dysfunction of the enzyme phenylalanine hydroxylase (PAH). Alterations in the level of PAH leads to the toxic accumulation of phenylalanine in the blood and brain. Protein degradation mediated by ubiquitination is a principal cellular process for maintaining protein homeostasis. Therefore, it is important to identify the E3 ligases responsible for PAH turnover and proteostasis. Here, we report that anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 is an E3 ubiquitin ligase complex that interacts and promotes the polyubiquitination of PAH through the 26S proteasomal pathway. Cdh1 destabilizes and declines the half-life of PAH. In contrast, the CRISPR/Cas9-mediated knockout of Cdh1 stabilizes PAH expression and enhances phenylalanine metabolism. Additionally, our current study demonstrates the clinical relevance of PAH and Cdh1 correlation in hepatocellular carcinoma (HCC). Overall, we show that PAH is a prognostic marker for HCC and Cdh1 could be a potential therapeutic target to regulate PAH-mediated physiological and metabolic disorders.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Fenilalanina Hidroxilasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Estabilidad de Enzimas , Células HEK293 , Semivida , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fenilalanina/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Ubiquitinación
15.
Biochem Biophys Res Commun ; 512(1): 60-65, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30862357

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received attention as an anticancer therapy because it mediates apoptosis of several cancer cell types but not normal human cell types. In this study, we implemented genome editing techniques to upregulate DR5 and downregulate cFLIP in HeLa cells to stimulate TRAIL-induced apoptosis. We designed and validated sgRNAs to enrich the endogenous level of DR5 by dead Cas9 (dCas9). Similarly, we designed two sgRNAs to disrupt the cFLIP gene by CRISPR/Cas9. We analyzed the effect of TRAIL on tumor cells by co-transfecting HeLa cells with the best combinations of sgRNAs regulating DR5 and cFLIP genes. TRAIL-induced apoptosis in HeLa cells was evaluated by the γH2AX foci formation assay to check for double-strand break and propidium iodide and Annexin V staining to quantify apoptotic cells. Viable cells were identified by CCK-8 assay, and cleaved-PARP level was evaluated by Western blot. This is the first study to demonstrate that genome editing techniques can be used as an effective combinatorial treatment strategy to induce apoptosis of cancer cells. In particular, enhancement of DR5 expression and inhibition of cFLIP expression by genome editing had a synergistic effect of inhibiting proliferation and inducing apoptosis in TRAIL-resistant HeLa cells. These results suggest that combinatorial treatment strategies mediated by the CRISPR/Cas9 system may be effective for design of other human TRAIL-resistant cell types.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Sistemas CRISPR-Cas , Regulación hacia Abajo , Edición Génica , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Regulación hacia Arriba
16.
Biochem Biophys Res Commun ; 505(3): 748-754, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30293684

RESUMEN

Malignant melanoma is one of the most fatal and aggressive skin cancers, originating from pigment-containing melanocytes. Despite progress in clinical research, treatment options for malignant melanoma have been limited. The nuclear factor of activated T-cell 5 (NFAT5), originally identified as tonicity regulated transcription factor Ton/EBP, is now known as a carcinogenic gene in several types of cancer pathology. In this study, we knocked down NFAT5 to investigate its role in melanoma cancer. shRNA-mediated knockdown of NFAT5 led to a significant decrease in cell proliferation in vitro. Additionally, depletion of NFAT5 inhibited the cell migratory ability of B16BL6 melanoma cells and led to more accumulation at the G2/M phase of the cell cycle. Furthermore, NFAT5 was essential for the development of melanoma cancer pathophysiology in an in vivo mouse model. NFAT5 knockdown-induced tumor growth was slow and tumor volume was significantly reduced compared to mock controls. Moreover, NFAT5 knockdown was associated with a low number of metastatic nodules on the lung and liver. To our knowledge, our data demonstrate for the first time a role of NFAT5 in the development of melanoma. We provide evidence for NFAT5 as a marker of cell migration and metastasis, indicating that NFAT5 represents a novel therapeutic target in melanoma.


Asunto(s)
Melanoma Experimental/genética , Factores de Transcripción NFATC/genética , Interferencia de ARN , Neoplasias Cutáneas/genética , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Metástasis de la Neoplasia , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Análisis de Supervivencia , Carga Tumoral/genética
17.
Stem Cells ; 35(1): 9-16, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27341175

RESUMEN

Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.


Asunto(s)
Linaje de la Célula , Enzimas Desubicuitinizantes/metabolismo , Células Madre/citología , Animales , Reprogramación Celular , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Madre/metabolismo , Ubiquitina/metabolismo
18.
J Biol Chem ; 291(2): 752-61, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598518

RESUMEN

We have previously reported that Ahnak-mediated TGFß signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak(-/-) MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak(-/-) MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak(-/-) MEF cells (Ahnak(-/-)-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak(-/-)-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak(-/-) MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.


Asunto(s)
Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Diferenciación Celular , Reprogramación Celular , Regulación hacia Abajo , Cuerpos Embrioides/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Factor 4 Similar a Kruppel , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Teratoma/patología
19.
Biochim Biophys Acta ; 1849(8): 1081-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26149774

RESUMEN

Skeletal muscle cell differentiation requires a family of proteins called myogenic regulatory factors (MRFs) to which MyoD belongs. The activity of MyoD is under epigenetic regulation, however, the molecular mechanism by which histone KMTs and KDMs regulate MyoD transcriptional activity through methylation remains to be determined. Here we provide evidence for a unique regulatory mechanism of MyoD transcriptional activity through demethylation by Jmjd2C demethylase whose level increases during muscle differentiation. G9a decreases MyoD stability via methylation-dependent MyoD ubiquitination. Jmjd2C directly associates with MyoD in vitro and in vivo to demethylate and stabilize MyoD. The hypo-methylated MyoD due to Jmjd2C is significantly more stable than hyper-methylated MyoD by G9a. Cul4/Ddb1/Dcaf1 pathway is essential for the G9a-mediated MyoD degradation in myoblasts. By the stabilization of MyoD, Jmjd2C increases myogenic conversion of mouse embryonic fibroblasts and MyoD transcriptional activity with erasing repressive H3K9me3 level at the promoter of MyoD target genes. Collectively, Jmjd2C increases MyoD transcriptional activity to facilitate skeletal muscle differentiation by increasing MyoD stability through inhibiting G9a-dependent MyoD degradation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína MioD/metabolismo , Oxidorreductasas N-Desmetilantes/fisiología , Activación Transcripcional , Animales , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo , Epigénesis Genética/fisiología , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Proteína MioD/fisiología , Mioblastos/fisiología , Proteolisis
20.
Biochim Biophys Acta ; 1849(6): 709-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25725482

RESUMEN

The ubiquitin-proteasome system (UPS) plays an important role in protein quality control, cellular signalings, and cell differentiation through the regulated turnover of key transcription factors in cardiac tissue. However, the molecular mechanism underlying Fbxo25-mediated ubiquitination of cardiac transcription factors remains elusive. We report that an Fbxo25-mediated SCF ubiquitination pathway regulates the protein levels and activities of Tbx5 and Nkx2-5 based on our studies using MG132, proteasome inhibitor, and the temperature sensitive ubiquitin system in ts20 cells. Our data indicate that Fbxo25 directly interacts with Tbx5 and Nkx2-5 in vitro and in vivo. In support of our findings, a dominant-negative mutant of Fbxo25, Fbxo251-236, prevents Tbx5 degradation and increases Tbx5 transcriptional activity in a Tbx5 responsive luciferase assay. Therefore, Fbxo25 facilitates Tbx5 degradation in an SCF-dependent manner. In addition, the silencing of endogenous Fbxo25 increases Tbx5 and Nkx2-5 mRNA levels and suppresses mESC-derived cardiomyocyte differentiation. Likewise, the exogenous expression of FBXO25 downregulates NKX2-5 level in human ESC-derived cardiomyocytes. In myocardial infarction model, Fbxo25 mRNA decreases, whereas the mRNA and protein levels of Tbx5 and Nkx2-5 increase. The protein levels of Tbx5 and Nkx2-5 are regulated negatively by Fbxo25-mediated SCF ubiquitination pathway. Thus, our findings reveal a novel mechanism for regulation of SCFFbox25-dependent Nkx2-5 and Tbx5 ubiquitination in cardiac development and provide a new insight into the regulatory mechanism of Nkx2-5 and Tbx5 transcriptional activity.


Asunto(s)
Diferenciación Celular/genética , Proteínas F-Box/genética , Proteínas de Homeodominio/genética , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Animales , Células Madre Embrionarias , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/biosíntesis , Humanos , Leupeptinas/administración & dosificación , Ratones , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Proteínas Ligasas SKP Cullina F-box , Proteínas de Dominio T Box/biosíntesis , Factores de Transcripción/biosíntesis , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA