Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 77(3): 888-901, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35560370

RESUMEN

BACKGROUND AND AIMS: In obesity and type 2 diabetes mellitus, leptin promotes insulin resistance and contributes to the progression of NASH via activation of hepatic stellate cells (HSCs). However, the pathogenic mechanisms that trigger HSC activation in leptin-deficient obesity are still unknown. This study aimed to determine how HSC-targeting lipocalin-2 (LCN2) mediates the transition from simple steatosis to NASH. APPROACH AND RESULTS: Male wild-type (WT) and ob/ob mice were fed a high-fat diet (HFD) for 20 weeks to establish an animal model of NASH with fibrosis. Ob/ob mice were subject to caloric restriction or recombinant leptin treatment. Double knockout (DKO) mice lacking both leptin and lcn2 were also fed an HFD for 20 weeks. In addition, HFD-fed ob/ob mice were treated with gadolinium trichloride to deplete Kupffer cells. The LX-2 human HSCs and primary HSCs from ob/ob mice were used to investigate the effects of LCN2 on HSC activation. Serum and hepatic LCN2 expression levels were prominently increased in HFD-fed ob/ob mice compared with normal diet-fed ob/ob mice or HFD-fed WT mice, and these changes were closely linked to liver fibrosis and increased hepatic α-SMA/matrix metalloproteinase 9 (MMP9)/signal transducer and activator of transcription 3 (STAT3) protein levels. HFD-fed DKO mice showed a marked reduction of α-SMA protein compared with HFD-fed ob/ob mice. In particular, the colocalization of LCN2 and α-SMA was increased in HSCs from HFD-fed ob/ob mice. In primary HSCs from ob/ob mice, exogenous LCN2 treatment induced HSC activation and MMP9 secretion. By contrast, LCN2 receptor 24p3R deficiency or a STAT3 inhibitor reduced the activation and migration of primary HSCs. CONCLUSIONS: LCN2 acts as a key mediator of HSC activation in leptin-deficient obesity via α-SMA/MMP9/STAT3 signaling, thereby exacerbating NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa , Células Estrelladas Hepáticas/metabolismo , Leptina , Lipocalina 2/metabolismo , Hígado/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/metabolismo
2.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888196

RESUMEN

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Melanoma , Neoplasias Cutáneas , Animales , Femenino , Humanos , Masculino , Ratones , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Ciclo Celular , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Invasividad Neoplásica , Pronóstico , Proteoglicanos/metabolismo , Proteoglicanos/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
3.
Biochem Biophys Res Commun ; 652: 14-21, 2023 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-36806084

RESUMEN

Lipocalin-2 (LCN2) is an acute phase protein used as a biomarker for acute lung injury (ALI). Although the innate immune functions of LCN2 have been studied, how LCN2 contributes to ALI induced by lipopolysaccharide (LPS) remains unknown. In this study, we investigated the effect of LCN2 deletion on LPS-induced ALI using RNA-sequencing. LPS-treated LCN2 knockout (KO) mice had a decreased histopathological score and reduced neutrophil and macrophage infiltration in lung tissue compared with LPS-treated WT mice. RNA-sequencing analysis identified 38 differentially expressed genes (DEGs), including Cxcl5, Cxcl13, Xcl1, Saa1, and Cd14. In particular, Gene Ontology analysis of DEGs revealed a significant reduction in the inflammatory response, neutrophil chemotaxis, and chemokine-mediated signaling in LPS-treated LCN2KO mice compared with LPS-treated WT mice. Thus, these results suggest that LCN2 deletion alleviates LPS-induced ALI and that LCN2 may be involved in chemotaxis-related gene expression.


Asunto(s)
Lipopolisacáridos , Neumonía , Animales , Ratones , Lipocalina 2/genética , Lipopolisacáridos/efectos adversos , Quimiotaxis , ARN , Ratones Endogámicos C57BL , Inflamación/metabolismo , Ratones Noqueados
4.
Biochem Biophys Res Commun ; 667: 10-17, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37201358

RESUMEN

Type 2 diabetes is associated with a risk factor for Alzheimer's disease (AD). Activation of glial cells, such as microglia and astrocytes, is crucial for the development of neuroinflammation in both diabetes and AD. The role of amyloid-beta oligomer (AßO) in the hippocampus of diabetic mice has been investigated; however, the effect of galectin-3 and lipocalin-2 (LCN2) on amyloid toxicity-related glial activation in diabetic mice is not known. To fill this knowledge gap, we fed mice a high-fat diet (HFD) for 20 weeks to induce a diabetic state and then injected the hippocampus with AßO. Sholl analysis of iba-1-positive microglia showed retraction of microglial ramifications in the hippocampus of HFD-fed diabetic mice. AßO treatment caused more retraction of microglial process in HFD-fed mice. In particular, microglial galectin-3 levels and astrocytic LCN2 levels were increased in the hippocampus of HFD-fed mice with AßO treatment. These findings suggest that galectin-3 and LCN2 are involved in amyloid toxicity mechanisms, especially glial activation under diabetic conditions.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Galectina 3 , Astrocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Lipocalina 2/farmacología , Enfermedad de Alzheimer/etiología , Hipocampo/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203530

RESUMEN

The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Humanos , Adenocarcinoma del Pulmón/genética , Biomarcadores , Expresión Génica , Neoplasias Pulmonares/genética , Melanoma/genética , Multiómica , Neoplasias Cutáneas/genética , Microambiente Tumoral/genética
6.
Biochem Biophys Res Commun ; 588: 8-14, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34933182

RESUMEN

Doxorubicin (DOX) is an effective anticancer drug with the side effect of irreparable cardiomyopathy. Lipocalin-2 (LCN2) has been identified as an important regulator of oxidative stress and inflammation in cardiovascular disease pathophysiology. Here, we demonstrate that LCN2 deletion increases autophagic flux in the DOX-treated hearts. Mice were injected intraperitoneally six times with 30 mg/kg DOX. Echocardiography showed that DOX-treated wild-type (WT) mice had markedly weaker cardiac function compared to saline-treated WT mice. In DOX-treated LCN2 knockout (KO) mice, cardiac function was partially restored. Histological analysis showed a reduction in cardiomyocyte diameter in DOX-treated WT mice that was ameliorated in DOX-treated LCN2KO mice. Cardiac levels of phosphorylated signal transducer and activator of transcription 3, LCN2, heme oxygenase-1, and NAD (P) H dehydrogenase were markedly greater in DOX-treated WT mice than in DOX-treated LCN2KO mice. Light chain 3B (LC3B)II expression was higher in DOX-treated WT mice, but lower in DOX-treated LCN2KO mice when compared to saline-treated WT mice. Less co-localization of LC3B and lysosomal-associated membrane protein 1 was observed in DOX-treated WT mice than in DOX-treated LCN2KO mice. LCN2 co-localized with LC3B-stained cells in the DOX-treated WT mouse heart, but not in the DOX-treated LCN2KO mouse heart. These findings indicate that the cardiotoxic effect of DOX is due to autophagosome accumulation mediated by LCN2 upregulation and that LCN2 may inhibit autophagic flux, leading to DOX-induced cardiomyopathy.


Asunto(s)
Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Doxorrubicina/efectos adversos , Lipocalina 2/deficiencia , Animales , Autofagosomas/metabolismo , Autofagia , Femenino , Eliminación de Gen , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo , Fosforilación , Factor de Transcripción STAT3/metabolismo
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055028

RESUMEN

Erythroid differentiation regulator 1 (Erdr1) has previously been reported to control thymocyte selection via TCR signal regulation, but the effect of Erdr1 as a TCR signaling modulator was not studied in peripheral T cells. In this report, it was determined whether Erdr1 affected TCR signaling strength in CD4 T cells. Results revealed that Erdr1 significantly enhanced the anti-TCR antibody-mediated activation and proliferation of T cells while failing to activate T cells in the absence of TCR stimulation. In addition, Erdr1 amplified Ca2+ influx and the phosphorylation of PLCγ1 in CD4 T cells with the TCR stimuli. Furthermore, NFAT1 translocation into nuclei in CD4 T cells was also significantly promoted by Erdr1 in the presence of TCR stimulation. Taken together, our results indicate that Erdr1 positively modulates TCR signaling strength via enhancing the PLCγ1/Ca2+/NFAT1 signal transduction pathway.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores , Calcio/metabolismo , Señalización del Calcio , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Inmunofenotipificación , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Fosfolipasa C gamma/metabolismo , Fosforilación , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología
8.
J Neuroinflammation ; 18(1): 278, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34844610

RESUMEN

BACKGROUND: Diabetic individuals have increased circulating inflammatory mediators which are implicated as underlying causes of neuroinflammation and memory deficits. Tonicity-responsive enhancer-binding protein (TonEBP) promotes diabetic neuroinflammation. However, the precise role of TonEBP in the diabetic brain is not fully understood. METHODS: We employed a high-fat diet (HFD)-only fed mice or HFD/streptozotocin (STZ)-treated mice in our diabetic mouse models. Circulating TonEBP and lipocalin-2 (LCN2) levels were measured in type 2 diabetic subjects. TonEBP haploinsufficient mice were used to investigate the role of TonEBP in HFD/STZ-induced diabetic mice. In addition, RAW 264.7 macrophages were given a lipopolysaccharide (LPS)/high glucose (HG) treatment. Using a siRNA, we examined the effects of TonEBP knockdown on RAW264 cell' medium/HG-treated mouse hippocampal HT22 cells. RESULTS: Circulating TonEBP and LCN2 levels were higher in experimental diabetic mice or type 2 diabetic patients with cognitive impairment. TonEBP haploinsufficiency ameliorated the diabetic phenotypes including adipose tissue macrophage infiltrations, neuroinflammation, blood-brain barrier leakage, and memory deficits. Systemic and hippocampal LCN2 proteins were reduced in diabetic mice by TonEBP haploinsufficiency. TonEBP (+ / -) mice had a reduction of hippocampal heme oxygenase-1 (HO-1) expression compared to diabetic wild-type mice. In particular, we found that TonEBP bound to the LCN2 promoter in the diabetic hippocampus, and this binding was abolished by TonEBP haploinsufficiency. Furthermore, TonEBP knockdown attenuated LCN2 expression in lipopolysaccharide/high glucose-treated mouse hippocampal HT22 cells. CONCLUSIONS: These findings indicate that TonEBP may promote neuroinflammation and cognitive impairment via upregulation of LCN2 in diabetic mice.


Asunto(s)
Disfunción Cognitiva/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Tipo 2/sangre , Lipocalina 2/sangre , Factores de Transcripción NFATC/sangre , Enfermedades Neuroinflamatorias/sangre , Animales , Cognición/fisiología , Disfunción Cognitiva/etiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/psicología , Dieta Alta en Grasa , Aprendizaje por Laberinto/fisiología , Ratones , Enfermedades Neuroinflamatorias/etiología , Células RAW 264.7
9.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283647

RESUMEN

Erythroid differentiation regulator 1 (ERDR1) was newly identified as a secreted protein that plays an essential role in maintaining cell growth homeostasis. ERDR1 enhances apoptosis at high cell densities, leading to the inhibition of cell survival. Exogenous ERDR1 treatment decreases cancer cell proliferation and tumor growth as a result of increased apoptosis via the regulation of apoptosis-related gene expression. Moreover, ERDR1 plays a pivotal role in skin diseases; ERDR1 expression in actinic keratosis (AK) is negatively correlated with the increase in apoptosis. Because of its high specificity and efficiency, photodynamic therapy (PDT) is a common therapy for patients with various skin diseases, including cancer. Many studies indicate that apoptosis is mainly induced by PDT treatment. As an apoptosis inducer, the recovery of the ERDR1 expression after PDT is correlated with good therapeutic outcomes. Here, we review recent findings that highlight the function of ERDR1 in the control of apoptosis. Thus, ERDR1 may have a role in the apoptosis regulation of target cells in the lesions, as the recovery of its expression after PDT is correlated with good therapeutic outcomes.


Asunto(s)
Proliferación Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fotoquimioterapia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Fotoquimioterapia/métodos , Enfermedades de la Piel/etiología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología , Enfermedades de la Piel/terapia , Resultado del Tratamiento
10.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334006

RESUMEN

Erythroid differentiation regulator 1 (Erdr1) has been identified as an anti-inflammatory factor in several disease models, including collagen-induced arthritis (CIA), but its exact mechanisms are still not fully understood. Here, the involvement of regulatory T (Treg) cells in Erdr1-improved CIA was investigated. In the CIA model, Erdr1 was confirmed to reduce collagen-specific IgM in plasma and plasma cells in draining lymph nodes. Importantly, the downregulated Treg cell ratio in draining lymph nodes from CIA mice was recovered by Erdr1 treatment. In addition, administration of Erdr1 improved the CIA score and joint tissue damage, while it revealed no effect in Treg cell-depleted CIA mice, indicating that Treg cells mediate the therapeutic effects of Erdr1 in the CIA model. Results from in vitro experiments also demonstrated that Erdr1 significantly induced Treg cell differentiation and the expression of Treg activation markers, including CD25, CD69, and CTLA4 in CD4+Foxp3+ cells. Furthermore, Erdr1-activated Treg cells dramatically suppressed the proliferation of responder T cells, suggesting that they are functionally active. Taken together, these results show that Erdr1 induces activation of Treg cells and ameliorates rheumatoid arthritis via Treg cells.


Asunto(s)
Artritis Experimental/etiología , Artritis Experimental/metabolismo , Activación de Linfocitos/genética , Proteínas de la Membrana/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Artritis Experimental/patología , Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Inmunofenotipificación , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Supresoras de Tumor/metabolismo
11.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936141

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease that is associated with systemic inflammation and results in the destruction of joints and cartilage. The pathogenesis of RA involves a complex inflammatory process resulting from the action of various proinflammatory cytokines and, therefore, many novel therapeutic agents to block cytokines or cytokine-mediated signaling have been developed. Here, we tested the preventive effects of a small peptide, AESIS-1, in a mouse model of collagen-induced arthritis (CIA) with the aim of identifying a novel safe and effective biological for treating RA. This novel peptide significantly suppressed the induction and development of CIA, resulting in the suppression of synovial inflammation and cartilage degradation in vivo. Moreover, AESIS-1 regulated JAK/STAT3-mediated gene expression in vitro. In particular, the gene with the most significant change in expression was suppressor of cytokine signaling 3 (Socs3), which was enhanced 8-fold. Expression of the STAT3-specific inhibitor, Socs3, was obviously enhanced dose-dependently by AESIS-1 at both the mRNA and protein levels, resulting in a significant reduction of STAT3 phosphorylation in splenocytes from severe CIA mice. This indicated that AESIS-1 regulated STAT3 activity by upregulation of SOCS3 expression. Furthermore, IL-17 expression and the frequency of Th17 cells were considerably decreased by AESIS-1 in vivo and in vitro. Collectively, our data suggest that the novel synthetic peptide AESIS-1 could be an effective therapeutic for treating RA via the downregulation of STAT3 signaling.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Experimental/prevención & control , Péptidos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Colágeno , Modelos Animales de Enfermedad , Masculino , Ratones , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007882

RESUMEN

Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear. We found that diet-induced obesity (DIO) mice have significantly greater crown-like structures and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive cells than ob/ob or control mice. Using RNA sequencing (RNA-seq) analysis, we identified that the apoptosis- and inflammation-related gene Ship1 is upregulated in DIO and ob/ob mice compared with control mice. In particular, DIO mice had more SHIP1-positive macrophages and lysosomal-associated membrane protein 1 (LAMP1) as well as a higher B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio compared with ob/ob or control mice. Furthermore, caloric restriction attenuated adipose tissue inflammation, apoptosis, and autophagy by reversing increases in SHIP1-associated macrophages, Bax/Bcl2-ratio, and autophagy in DIO and ob/ob mice. These results demonstrate that DIO, not ob/ob, aggravates adipocyte inflammation, apoptosis, and autophagy due to differential SHIP1 expression. The evidence of decreased SHIP1-mediated inflammation, apoptosis, and autophagy indicates new therapeutic approaches for obesity-induced chronic inflammatory diseases.


Asunto(s)
Inflamación/genética , Obesidad/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/genética , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/patología , Animales , Apoptosis/genética , Autofagia/genética , Dieta Alta en Grasa , Humanos , Inflamación/patología , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Obesos , Obesidad/patología
13.
Biochem Biophys Res Commun ; 508(1): 123-129, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471862

RESUMEN

Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.


Asunto(s)
Hipotálamo/metabolismo , Células Mieloides/metabolismo , Neurogranina/metabolismo , Sirtuina 1/deficiencia , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Señalización del Calcio , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos , Expresión Génica , Inflamación/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proopiomelanocortina/metabolismo , Sirtuina 1/genética , Núcleo Hipotalámico Ventromedial/metabolismo
14.
Cell Immunol ; 336: 28-33, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30551791

RESUMEN

Erythroid differentiation regulator 1 (Erdr1) has been identified as a stromal survival factor released under stressful conditions. Previously, Erdr1 was reported to be expressed highly in thymus, but roles of Erdr1 in thymus were not known. Here, the effects of Erdr1 on T cell development were investigated. The expression of Erdr1 was higher in thymus than bone marrow and Erdr1 was detected in both the cortex and medulla of thymus. Erdr1 treatment significantly induced the expression of activation marker, CD69, from thymocytes in the presence of TCR stimuli in vitro and the induction was dependent on increased Ca2+ influx. In addition, in vivo administration of Erdr1 resulted in significant increase of total and positive selected thymocyte numbers, particularly in the number of CD3TCRhiCD69+ DP thymocytes. Taken together, our results show that Erdr1 enhances the strength of TCR signaling and cellularity of thymocytes by amplifying Ca2+ influx in thymocytes receiving TCR signals.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Timocitos/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Lectinas Tipo C/análisis , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
15.
Korean J Physiol Pharmacol ; 23(5): 335-344, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31496871

RESUMEN

Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.

16.
Biochem Biophys Res Commun ; 499(4): 1025-1031, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29634925

RESUMEN

Chronic low-grade inflammation-induced insulin resistance is associated with neuroinflammation. Myeloid sirtuin1 (SIRT1) deficiency aggravates high-fat diet (HFD)-induced insulin resistance. However, the function of myeloid-specific SIRT1 in the hippocampus of obese mice is largely unknown. To address this question, we fed myeloid SIRT1 knockout (KO) mice a HFD for 40 weeks. We found that HFD-fed SIRT1 KO mice had increased insulin resistance and macrophage infiltration in adipose tissue than wild type (WT) mice. Levels of HFD-induced lipocalin-2 (LCN2) were lower in SIRT1 KO mice than in WT. HFD-induced hippocampal LCN2 expression was lower in HFD-fed SIRT1 KO mice than in WT. Hippocampal acetylation of nuclear factor-κB (NF-κB) and amyloid precursor protein levels were higher in HFD-fed SIRT1 KO mice than in HFD-fed WT mice. Taken together, our results suggest that targeted induction of the anti-inflammatory effects of SIRT1 and LCN2 may help prevent obesity-associated insulin resistance and neuroinflammation.


Asunto(s)
Conducta Alimentaria , Hipocampo/patología , Inflamación/patología , Células Mieloides/metabolismo , Sirtuina 1/deficiencia , Adipocitos/metabolismo , Animales , Peso Corporal , Dieta Alta en Grasa , Resistencia a la Insulina , Lipocalina 2/sangre , Macrófagos/metabolismo , Ratones Noqueados , Sirtuina 1/metabolismo
18.
Int J Mol Sci ; 18(7)2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737711

RESUMEN

Artemisinin, a chemical compound used for the treatment of malaria, has been known to show anti-cancer activity. However, the effect of this chemical on natural killer (NK) cells, which are involved in tumor killing, remains unknown. Here, we demonstrate that artemisinin exerts a potent anti-cancer effect by activating NK cells. NK-92MI cells pre-treated with artemisinin were subjected to a cytotoxicity assay using K562 cells. The results showed that artemisinin significantly enhances the cytolytic activity of NK cells in a dose-dependent manner. Additionally, the artemisinin-enhanced cytotoxic effect of NK-92MI cells on tumor cells was accompanied by the stimulation of granule exocytosis, as evidenced by the detection of CD107a expression in NK cells. Moreover, this enhancement of cytotoxicity by artemisinin was also observed in human primary NK cells from peripheral blood. Our results suggest that artemisinin enhances human NK cell cytotoxicity and degranulation. This is the first evidence that artemisinin exerts antitumor activity by enhancing NK cytotoxicity. Therefore, these results provide a deeper understanding of the action of artemisinin and will contribute to the development and application of this class of compounds in cancer treatment strategies.


Asunto(s)
Artemisininas/farmacología , Inmunidad Celular/efectos de los fármacos , Células Asesinas Naturales/inmunología , Lactonas/farmacología , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Neoplasias/inmunología , Línea Celular , Humanos , Células K562 , Células Asesinas Naturales/patología , Neoplasias/patología
19.
Cell Physiol Biochem ; 39(4): 1595-607, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27627433

RESUMEN

BACKGROUND/AIMS: It is known that mesenchymal stem cells (MSCs) can have variable responses to hypoxic conditions and that hypoxia may specifically stimulate differentiation into osteogenic, chondrogenic, or adipogenic cells. Based on our previous study, we hypothesized that hypoxia may also induce MSC differentiation into cardiomyocytes and/or cells with comparable phenotypes. METHODS: The differences in the proteomes were specifically investigated in bone marrow-derived rat MSCs (BM-rMSCs) under normoxic and hypoxic conditions using 2-DE combined with a MALDI-TOF-MS analysis and western blot analysis. In addition, genetic and/or proteomic interactions were assessed using a String network analysis. RESULTS: Among the 35 markedly changed spots from a total of 393 matched spots, 24 were highly up-regulated and 11 were significantly down-regulated in hypoxic rMSCs based on a proteomic analysis. Although hypoxia failed to induce the direct differentiation of rMSCs into cardiomyocytes, several cardiomyocyte differentiation-related genes and proteins were significantly increased by hypoxic stress. CONCLUSION: We found that BM-rMSCs alter their expression of several cardiomyocyte differentiation-related genes and proteins under hypoxic conditions, and we examined the interactions between these genes and/or proteins, providing new insights for the applicability of MSCs preconditioned by hypoxic stimulation for use in cardiac diseases.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma/genética , Animales , Células de la Médula Ósea/citología , Hipoxia de la Célula , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/citología , Miocitos Cardíacos/citología , Cultivo Primario de Células , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
20.
Cell Physiol Biochem ; 40(1-2): 400-410, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27866198

RESUMEN

BACKGROUND/AIMS: We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. METHODS: To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. RESULTS: The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO) Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. CONCLUSION: Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina/efectos de los fármacos , Proteómica/métodos , Animales , Hipoxia de la Célula , Electroforesis en Gel Bidimensional , Redes Reguladoras de Genes , Células Madre Mesenquimatosas/efectos de los fármacos , Miocardio/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Tinción con Nitrato de Plata , Tropomiosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA