Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8013): 798-802, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599238

RESUMEN

Compared to polycrystalline semiconductors, amorphous semiconductors offer inherent cost-effective, simple and uniform manufacturing. Traditional amorphous hydrogenated Si falls short in electrical properties, necessitating the exploration of new materials. The creation of high-mobility amorphous n-type metal oxides, such as a-InGaZnO (ref. 1), and their integration into thin-film transistors (TFTs) have propelled advancements in modern large-area electronics and new-generation displays2-8. However, finding comparable p-type counterparts poses notable challenges, impeding the progress of complementary metal-oxide-semiconductor technology and integrated circuits9-11. Here we introduce a pioneering design strategy for amorphous p-type semiconductors, incorporating high-mobility tellurium within an amorphous tellurium suboxide matrix, and demonstrate its use in high-performance, stable p-channel TFTs and complementary circuits. Theoretical analysis unveils a delocalized valence band from tellurium 5p bands with shallow acceptor states, enabling excess hole doping and transport. Selenium alloying suppresses hole concentrations and facilitates the p-orbital connectivity, realizing high-performance p-channel TFTs with an average field-effect hole mobility of around 15 cm2 V-1 s-1 and on/off current ratios of 106-107, along with wafer-scale uniformity and long-term stabilities under bias stress and ambient ageing. This study represents a crucial stride towards establishing commercially viable amorphous p-channel TFT technology and complementary electronics in a low-cost and industry-compatible manner.

2.
Nature ; 616(7958): 724-730, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36796426

RESUMEN

Controlling the crystallinity and surface morphology of perovskite layers by methods such as solvent engineering1,2 and methylammonium chloride addition3-7 is an effective strategy for achieving high-efficiency perovskite solar cells. In particular, it is essential to deposit α-formamidinium lead iodide (FAPbI3) perovskite thin films with few defects due to their excellent crystallinity and large grain size. Here we report the controlled crystallization of perovskite thin films with the combination of alkylammonium chlorides (RACl) added to FAPbI3. The δ-phase to α-phase transition of FAPbI3 and the crystallization process and surface morphology of the perovskite thin films coated with RACl under various conditions were investigated through in situ grazing-incidence wide-angle X-ray diffraction and scanning electron microscopy. RACl added to the precursor solution was believed to be easily volatilized during coating and annealing owing to dissociation into RA0 and HCl with deprotonation of RA+ induced by RA⋯H+-Cl- binding to PbI2 in FAPbI3. Thus, the type and amount of RACl determined the δ-phase to α-phase transition rate, crystallinity, preferred orientation and surface morphology of the final α-FAPbI3. The resulting perovskite thin layers facilitated the fabrication of perovskite solar cells with a power-conversion efficiency of 26.08% (certified 25.73%) under standard illumination.

3.
Nature ; 598(7881): 444-450, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671136

RESUMEN

In perovskite solar cells, the interfaces between the perovskite and charge-transporting layers contain high concentrations of defects (about 100 times that within the perovskite layer), specifically, deep-level defects, which substantially reduce the power conversion efficiency of the devices1-3. Recent efforts to reduce these interfacial defects have focused mainly on surface passivation4-6. However, passivating the perovskite surface that interfaces with the electron-transporting layer is difficult, because the surface-treatment agents on the electron-transporting layer may dissolve while coating the perovskite thin film. Alternatively, interfacial defects may not be a concern if a coherent interface could be formed between the electron-transporting and perovskite layers. Here we report the formation of an interlayer between a SnO2 electron-transporting layer and a halide perovskite light-absorbing layer, achieved by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor. This interlayer has atomically coherent features, which enhance charge extraction and transport from the perovskite layer, and fewer interfacial defects. The existence of such a coherent interlayer allowed us to fabricate perovskite solar cells with a power conversion efficiency of 25.8 per cent (certified 25.5 per cent)under standard illumination. Furthermore, unencapsulated devices maintained about 90 per cent of their initial efficiency even after continuous light exposure for 500 hours. Our findings provide guidelines for designing defect-minimizing interfaces between metal halide perovskites and electron-transporting layers.

4.
Nature ; 577(7790): 359-363, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942056

RESUMEN

The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials1,2 is well known. However, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations3-5. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We illustrate our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains6, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase7. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation8-10. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.

5.
Nano Lett ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924488

RESUMEN

Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.

6.
Small ; : e2311172, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351480

RESUMEN

Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53 Ru0.47 O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53 Ru0.47 O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2 , respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53 Ru0.47 O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.

7.
Small ; 20(24): e2311136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148296

RESUMEN

Dual-engineering involved of grain boundaries (GBs) and oxygen vacancies (VO) efficiently engineers the material's catalytic performance by simultaneously introducing favorable electronic and chemical properties. Herein, a novel SnO2 nanoplate is reported with simultaneous oxygen vacancies and abundant grain boundaries (V,G-SnOx/C) for promoting the highly selective conversion of CO2 to value-added formic acid. Attributing to the synergistic effect of employed dual-engineering, the V,G-SnOx/C displays highly catalytic selectivity with a maximum Faradaic efficiency (FE) of 87% for HCOOH production at -1.2 V versus RHE and FEs > 95% for all C1 products (CO and HCOOH) within all applied potential range, outperforming current state-of-the-art electrodes and the amorphous SnOx/C. Theoretical calculations combined with advanced characterizations revealed that GB induces the formation of electron-enriched Sn site, which strengthens the adsorption of *HCOO intermediate. While GBs and VO synergistically lower the reaction energy barrier, thus dramatically enhancing the intrinsic activity and selectivity toward HCOOH.

8.
Ann Surg Oncol ; 31(5): 3024-3030, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372863

RESUMEN

BACKGROUND: This study aimed to investigate the oncologic long-term safety of proximal gastrectomy for upper-third advanced gastric cancer (AGC) and Siewert type II esophagogastric junction (EGJ) cancer. METHODS: The study enrolled patients who underwent proximal gastrectomy (PG) or total gastrectomy (TG) with standard lymph node (LN) dissection for pathologically proven upper-third AGC and EGJ cancers between January 2007 and December 2018. Propensity score-matching with a 1:1 ratio was performed to reduce the influence of confounding variables such as age, sex, tumor size, T stage, N stage, and tumor-node-metastasis (TNM) stage. Kaplan-Meier survival analysis was performed to analyze oncologic outcome. The prognostic factors of recurrence-free survival (RFS) were analyzed using the Cox proportional hazard analysis. RESULTS: Of the 713 enrolled patients in this study, 60 received PG and 653 received TG. Propensity score-matching yielded 60 patients for each group. The overall survival rates were 61.7 % in the PG group and 68.3 % in the TG group (p = 0.676). The RFS was 86.7 % in the PG group and 83.3 % in the TG group (p = 0.634). The PG group showed eight recurrences (1 anastomosis site, 1 paraaortic LN, 1 liver, 1 spleen, 1 lung, 1 splenic hilar LN, and 2 remnant stomachs). In the multivariate analysis, the operation method was not identified as a prognostic factor of tumor recurrence. CONCLUSION: The patients who underwent PG had a long-term oncologic outcome similar to that for the patients who underwent TG for upper-third AGC and EGJ cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Puntaje de Propensión , Estudios Retrospectivos , Adenocarcinoma/patología , Recurrencia Local de Neoplasia/patología , Gastrectomía , Unión Esofagogástrica/cirugía , Unión Esofagogástrica/patología , Neoplasias Gástricas/patología , Resultado del Tratamiento
9.
Nano Lett ; 23(9): 3739-3747, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37075087

RESUMEN

The construction of a desirable, environmentally friendly, and cost-effective nanoheterostructure photoanode to treat refractory organics is critical and challenging. Herein, we unveiled a hierarchical dendritic Co3O4-SnO2 heterostructure via a sequential hydrothermal process. The time of the secondary hydrothermal process can control the size of the ultrathin SnO2 nanosheets on the basis of the Ostwald solidification mass conservation principle. Ti/Co3O4-SnO2-168h with critical growth size demonstrated a photoelectrocatalysis degradation rate of ∼93.3% for a high dye concentrate of 90 mg/L with acceptable long-term cyclability and durability over reported Co3O4-based electrodes because of the large electrochemically active area, low charge transfer resistance, and high photocurrent intensity. To gain insight into the photoelectric synergy, we proposed a type-II heterojunction between Co3O4 and SnO2, which prevents photogenerated carriers' recombination and improves the generation of dominant active species •O2-, 1O2, and h+. This work uncovered the Ti/Co3O4-SnO2-168 as a promising catalyst and provided a simple and inexpensive assembly strategy to obtain binary integrated nanohybrids with targeted functionalities.

10.
Angew Chem Int Ed Engl ; 63(7): e202315633, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38151468

RESUMEN

Even though grain boundaries (GBs) have been previously employed to increase the number of active catalytic sites or tune the binding energies of reaction intermediates for promoting electrocatalytic reactions, the effect of GBs on the tailoring of the local chemical environment on the catalyst surface has not been clarified thus far. In this study, a GBs-enriched iridium (GB-Ir) was synthesized and examined for the alkaline hydrogen evolution reaction (HER). Operando Raman spectroscopy and density functional theory (DFT) calculations revealed that a local acid-like environment with H3 O+ intermediates was created in the GBs region owing to the electron-enriched surface Ir atoms at the GBs. The H3 O+ intermediates lowered the energy barrier for water dissociation and provided enough hydrogen proton to promote the generation of hydrogen spillover from the sites at the GBs to the sites away from the GBs, thus synergistically enhancing the hydrogen evolution activity. Notably, the GB-Ir catalyst exhibited a high alkaline HER activity (10 mV @ 10 mA cm-2 , 20 mV dec-1 ). We believe that our findings will promote further research on GBs and the surface science of electrochemical reactions.

11.
Angew Chem Int Ed Engl ; : e202409206, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975661

RESUMEN

Regulating competitive reaction pathways to direct the selectivity of electrochemical CO2 reduction reaction toward a desired product is crucial but remains challenging. Herein, switching product from HCOOH to CO is achieved by incorporating Sb element into the CuS, in which the Cu-S ionic bond is coupled with S-Sb covalent bond through bridging S atoms that elongates the Cu-S bond from 2.24 Å to 2.30 Å. Consequently, CuS with a shorter Cu-S bond exhibited a high selectivity for producing HCOOH, with a maximum Faradaic efficiency (FE) of 72%. Conversely, Cu3SbS4 characterized by an elongated Cu-S bond exhibited the most pronounced production of CO with a maximum FE of 60%. In situ spectroscopy combined with density functional theory calculations revealed that the altered Cu‒S bond length and local coordination environment make the *HCOO binding energy weaker on Cu3SbS4 compared to that on CuS. Notably, a volcano-shaped correlation between the Cu-S bond length and adsorption strength of *COOH indicates that Cu-S in Cu3SbS4 as double-active sites facilitates the adsorption of *COOH, and thus results in the high selectivity of Cu3SbS4 toward CO.

12.
Angew Chem Int Ed Engl ; 63(3): e202317622, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061991

RESUMEN

Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.

13.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047734

RESUMEN

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

14.
Small ; : e2306919, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063836

RESUMEN

Rechargeable aqueous zinc-ion batteries (ZIBs) have emerged as an alternative to lithium-ion batteries due to their affordability and high level of safety. However, their commercialization is hindered by the low mass loading and irreversible structural changes of the cathode materials during cycling. Here, a disordered phase of a manganese nickel cobalt dioxide cathode material derived from wastewater via a coprecipitation process is reported. When used as the cathode for aqueous ZIBs , the developed electrode delivers 98% capacity retention at a current density of 0.1 A g-1 and 72% capacity retention at 1 A g-1 while maintaining high mass loading (15 mg cm-2 ). The high performance is attributed to the structural stability of the Co and Ni codoped phase; the dopants effectively suppress Jahn-Teller distortion of the manganese dioxide during cycling, as revealed by operando X-ray absorption spectroscopy. Also, it is found that the Co and Ni co-doped phase effectively inhibits the dissolution of Mn2+ , resulting in enhanced durability without capacity decay at first 20 cycles. Further, it is found that the performance of the electrode is sensitive to the ratio of Ni to Co, providing important insight into rational design of more efficient cathode materials for low-cost, sustainable, rechargeable aqueous ZIBs.

15.
Arch Orthop Trauma Surg ; 143(7): 4257-4265, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36434266

RESUMEN

INTRODUCTION: Mucoid degeneration (MD) of the anterior cruciate ligament (ACL) is a well-recognized pathology characterized by the degradation of collagen fibers and infiltration of a mucoid-like substance. This study is to determine the anatomical associated factors for MD-ACL using radiographic and magnetic resonance imaging (MRI). MATERIALS AND METHODS: This was a retrospective study on patients who had undergone knee arthroscopy between 2011 and 2020. The patients with MD-ACL were defined and enrolled by the MRI and arthroscopy. Eventually, 52 patients in the MD-ACL group (group 1) and 52 patients in the control group (group 2) were enrolled, following sex and age matching. Radiologic evaluation included the assessment of Kellgren-Lawrence (K-L) grade, mechanical hip-knee-ankle (HKA) angle, posterior tibial slope (PTS) angle, and Insall-Salvati ratio. The notch width index and transverse notch angle were measured on MRI, and the grade of trochlear dysplasia was defined. Logistic regression analysis, receiver operating characteristic (ROC) curves, and area under curve (AUC) were performed. RESULTS: The ROM was significantly decreased in group 1, whereas the PTS angle was significantly larger in group 1. Combined ganglion cysts of ACL were found in 42/52 patients (80.7%) in group 1. The risk of MD-ACL was associated with a steeper PTS angle, increased Insall-Salvati ratio, male sex, higher K-L grade, and decreased transverse notch angle and notch width index. The cutoff values in ROC analysis were found to be ≤ 28.27% for the notch width index (AUC, 0.849; p < 0.001), > 12.2° for the PTS angle (AUC, 0.765; p < 0.001), and ≤ 47.4° for the transverse notch angle (AUC, 0.711; p < 0.001), but not significant for Insall-salvati ratio. CONCLUSION: A steeper PTS angle, decreased notch width index, and transverse notch angle are significantly associated with the presence of MD-ACL. These factors should be considered during diagnosis or when determining the treatment strategy for symptomatic MD-ACL patients. LEVEL OF EVIDENCE: Level IIIb.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Masculino , Ligamento Cruzado Anterior/diagnóstico por imagen , Estudios Retrospectivos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Tibia , Imagen por Resonancia Magnética/métodos , Factores de Riesgo
16.
Small ; 18(26): e2200972, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35618443

RESUMEN

Electrification of transportation has spurred the development of fast-charge energy storage devices. High-power lithium-ion batteries require electrode materials that can store lithium quickly and reversibly. Herein, the design and construction of a Nb2 O5-δ /graphite composite electrode that demonstrates remarkable rate capability and durability are reported. The presence of graphite enables the formation of a dominant Nb12 O29 phase and a minor T-Nb2 O5 phase. The high rate capability is attributed to the enhanced electronic conductivity and lower energy barriers for fast lithium diffusion in both Nb12 O29 and T-Nb2 O5 , as unraveled by density functional theory calculations. The excellent durability or long cycling life is originated from the coherent redox behavior of Nb ions and high reversibility of lithium intercalation/deintercalation, as revealed by operando X-ray absorption spectroscopy analysis. When tested in a half-cell at high cycling rates, the composite electrode delivers a specific capability of 120 mAh g-1 at 80 C and retains over 150 mAh g-1 after 2000 cycles at 30 C, implying that it is a highly promising anode material for fast-charging lithium-ion batteries.

17.
Exp Dermatol ; 31(2): 223-232, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34378233

RESUMEN

Skin barrier dysfunction induces skin inflammation. Signal transducer and activator of transcription 3 (STAT3) is known to be involved in Th17-mediated immune responses and barrier integrity in the cornea and intestine; however, its role in the skin barrier remains largely unknown. In this study, we elucidated the potential role of STAT3 in the skin barrier and its effect on kallikrein-related peptidase 5 (KLK5) and serine protease inhibitor Kazal-type 5 (SPINK5) expression using a mouse model with keratinocyte-specific ablation of STAT3. Keratinocyte-specific loss of STAT3 induced a cutaneous inflammatory phenotype with pruritus and intense scratching behaviour in mice. Transcriptomic analysis revealed that the genes associated with impaired skin barrier function, including KLK5, were upregulated. The effect of STAT3 on KLK5 expression in keratinocytes was not only substantiated by the increase in KLK5 expression following treatment with STAT3 siRNA but also by its decreased expression following STAT3 overexpression. Overexpression and IL-17A-mediated stimulation of STAT3 increased the expression of SPINK5, which was blocked by STAT3 siRNA. These results suggest that the expression of SPINK5 and KLK5 in keratinocytes could be dependent on STAT3 and that STAT3 might play an essential role in the maintenance of skin barrier homeostasis.


Asunto(s)
Calicreínas , Factor de Transcripción STAT3 , Calicreínas/genética , Calicreínas/metabolismo , Queratinocitos/metabolismo , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/metabolismo , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética
18.
Proc Natl Acad Sci U S A ; 116(26): 12952-12957, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189594

RESUMEN

T cell-independent (TI) B cell response is critical for the early protection against pathogen invasion. The regulation and activation of Bruton's tyrosine kinase (Btk) is known as a pivotal step of B cell antigen receptor (BCR) signaling in TI humoral immunity, as observed in patients with X-linked agammaglobulinemia (XLA) experiencing a high incidence of encapsulated bacterial infections. However, key questions remain as to whether a well-established canonical BCR signaling pathway is sufficient to regulate the activity of Btk. Here, we find that inositol hexakisphosphate (InsP6) acts as a physiological regulator of Btk in BCR signaling. Absence of higher order inositol phosphates (InsPs), inositol polyphosphates, leads to an inability to mount immune response against TI antigens. Interestingly, the significance of InsP6-mediated Btk regulation is more prominent in IgM+ plasma cells. Hence, the present study identifies higher order InsPs as principal components of B cell activation upon TI antigen stimulation and presents a mechanism for InsP-mediated regulation of the BCR signaling.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia/inmunología , Enfermedades Genéticas Ligadas al Cromosoma X/inmunología , Inmunidad Humoral , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/inmunología , Agammaglobulinemia Tirosina Quinasa/inmunología , Agammaglobulinemia/genética , Agammaglobulinemia/patología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Ratones , Ratones Transgénicos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ácido Fítico/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/inmunología
19.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36146446

RESUMEN

The 3rd Generation Partnership Project (3GPP) narrowband Internet of Things (NB-IoT) over non-terrestrial networks (NTN) is the most promising candidate technology supporting 5G massive machine-type communication. Compared to geostationary earth orbit, low earth orbit (LEO) satellite communication has the advantage of low propagation loss, but suffers from high Doppler shift. The 3GPP proposes Doppler shift pre-compensation for each beam region of the satellite. However, user equipment farther from the beam center has significant residual Doppler shifts even after pre-compensation, which degrades link performance. This study proposes residual Doppler shift compensation by adding demodulation reference signal symbols and reducing satellite beam coverage. The block error rate (BLER) data are obtained using link-level simulation with the proposed technique. Since the communication time provided by a single LEO satellite moving fast is short, many LEO satellites are necessary for seamless 24-h communication. Therefore, with the BLER data, we analyze the link budget for actual three-dimensional orbits with a maximum of 162 LEO satellites. We finally investigate the effect of the proposed technique on performance metrics such as the per-day total service time and maximum persistent service time, considering the number of satellites and the satellite spacing. The results show that a more prolonged and continuous communication service is possible with significantly fewer satellites using the proposed technique.

20.
Angew Chem Int Ed Engl ; 61(47): e202212196, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36164268

RESUMEN

Synergistic optimization of the elementary steps of water dissociation and hydrogen desorption for the hydrogen evolution reaction (HER) in alkaline media is a challenge. Herein, the Ru cluster anchored on a trace P-doped defective TiO2 substrate (Ru/P-TiO2 ) was synthesized as an electrocatalyst for the HER; it exhibited a commercial Pt/C-like geometric activity and an excellent mass activity of 9984.3 mA mgRu -1 at -0.05 V vs. RHE, which is 34.3 and 18.7 times higher than that of Pt/C and Ru/TiO2 , respectively. Experimental and theoretical studies indicated that using a rutile-TiO2 -crystal-phase substrate enhanced the HER activity more than the anatase phase. Rich surface oxygen vacancies on rutile-TiO2 facilitated the adsorption and dissociation of water, while the partial substitution of Ti4+ with P5+ enhanced H2 generation by facilitating hydrogen spillover from the Ru site to the surface P site, synergistically enhancing the HER activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA