Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39201449

RESUMEN

In this study, we explored the potential of genetically engineered exosomes as vehicles for precise drug delivery in gastric cancer therapy. A novel antitumor strategy using biocompatible exosomes (Ex) was devised by genetically engineering adipose-derived stem cells to express an MKN45-binding peptide (DE532) on their surfaces. 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) was encapsulated in engineered exosomes, resulting in 17-DMAG-loaded DE532 exosomes. In both in vitro and in vivo experiments using mouse gastric cancer xenograft models, we demonstrated that 17-DMAG-loaded DE532 Ex exhibited superior targetability over DE532 Ex, 17-DMAG-loaded Ex, and Ex. Administration of the 17-DMAG-loaded DE532 Ex yielded remarkable antitumor effects, as evidenced by the smallest tumor size, lowest tumor growth rate, and lowest excised tumor weight. Further mechanistic examinations revealed that the 17-DMAG-loaded DE532 Ex induced the highest upregulation of the pro-apoptotic marker B-cell lymphoma-2-like protein 11 and the lowest downregulation of the anti-apoptotic marker B-cell lymphoma-extra large. Concurrently, the 17-DMAG-loaded DE532 Ex demonstrated the lowest suppression of antioxidant enzymes, such as superoxide dismutase 2 and catalase, within tumor tissues. These findings underscore the potential of 17-DMAG-loaded DE532 exosomes as a potent therapeutic strategy for gastric cancer, characterized by precise targetability and the potential to minimize adverse effects.


Asunto(s)
Antineoplásicos , Benzoquinonas , Exosomas , Lactamas Macrocíclicas , Neoplasias Gástricas , Exosomas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Animales , Ratones , Benzoquinonas/farmacología , Benzoquinonas/administración & dosificación , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Lactamas Macrocíclicas/farmacología , Lactamas Macrocíclicas/administración & dosificación , Lactamas Macrocíclicas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Sistemas de Liberación de Medicamentos/métodos , Apoptosis/efectos de los fármacos , Ratones Desnudos
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542268

RESUMEN

Recently, artificial exosomes have been developed to overcome the challenges of natural exosomes, such as production scalability and stability. In the production of artificial exosomes, the incorporation of membrane proteins into lipid nanostructures is emerging as a notable approach for enhancing biocompatibility and treatment efficacy. This study focuses on incorporating HEK293T cell-derived membrane proteins into liposomes to create membrane-protein-bound liposomes (MPLCs), with the goal of improving their effectiveness as anticancer therapeutics. MPLCs were generated by combining two key elements: lipid components that are identical to those in conventional liposomes (CLs) and membrane protein components uniquely derived from HEK293T cells. An extensive comparison of CLs and MPLCs was conducted across multiple in vitro and in vivo cancer models, employing advanced techniques such as cryo-TEM (tramsmission electron microscopy) imaging and FT-IR (fourier transform infrared spectroscopy). MPLCs displayed superior membrane fusion capabilities in cancer cell lines, with significantly higher cellular uptake. Additionally, MPLCs maintained their morphology and size better than CLs when exposed to FBS (fetal bovine serum), suggesting enhanced serum stability. In a xenograft mouse model using HeLa and ASPC cancer cells, intravenous administration of MPLCs MPLCs accumulated more in tumor tissues, highlighting their potential for targeted cancer therapy. Overall, these results indicate that MPLCs have superior tumor-targeting properties, possibly attributable to their membrane protein composition, offering promising prospects for enhancing drug delivery efficiency in cancer treatments. This research could offer new clinical application opportunities, as it uses MPLCs with membrane proteins from HEK293T cells, which are known for their efficient production and compatibility with GMP (good manufacturing practice) standards.


Asunto(s)
Liposomas , Nanoestructuras , Humanos , Ratones , Animales , Liposomas/química , Células HEK293 , Espectroscopía Infrarroja por Transformada de Fourier , Proteínas de la Membrana , Lípidos/química
3.
Chem Rev ; 121(24): 15075-15140, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34677946

RESUMEN

A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.


Asunto(s)
Platino (Metal) , Polímeros , Catálisis , Electrodos , Electrólitos/química , Platino (Metal)/química , Polímeros/química
4.
Genomics ; 114(4): 110407, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716820

RESUMEN

To explore extracellular vesicle microRNAs (EV miRNAs) and their target mRNAs in relation to diabetic kidney disease (DKD), we performed paired plasma and urinary EV small RNA sequencing (n = 18) in patients with type 2 diabetes and DKD (n = 5) and healthy subjects (n = 4) and metabolic network analyses using our own miRNA and public mRNA datasets. We found 13 common differentially expressed EV miRNAs in both fluids and 17 target mRNAs, including RRM2, NT5E, and UGDH. Because succinate dehydrogenase B was suggested to interact with proteins encoded by these three genes, we measured urinary succinate and adenosine in a validation study (n = 194). These two urinary metabolite concentrations were associated with DKD progression. In addition, renal expressions of NT5E and UGDH proteins were increased in db/db mice with DKD compared to control mice. In conclusion, we profiled DKD-related EV miRNAs in plasma and urine samples and found their relevant target pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Vesículas Extracelulares , MicroARNs , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , ARN Mensajero/metabolismo
5.
Mol Biol Rep ; 49(9): 8859-8870, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35941418

RESUMEN

BACKGROUND: Hypoxic preconditioning (HP) is a stem cell preconditioning modality designed to augment the therapeutic effects of mesenchymal stem cells (MSCs). Although autophagy is expected to play a role in HP, very little is known regarding the relationship between HP and autophagy. METHODS AND RESULTS: The adipose-derived stem cell (ASC)-secretome obtained under normoxia (NCM) and ASC-secretome obtained under HP (HCM) were obtained by culturing ASCs for 24 h under normoxic (21% partial pressure of O2) and hypoxic (1% partial pressure of O2) conditions, respectively. Subsequently, to determine the in vivo effects of HCM, each secretome was injected into 70% partially hepatectomized mice, and liver specimens were obtained. HCM significantly reduced the apoptosis of thioacetamide-treated AML12 hepatocytes and promoted the autophagic processes of the cells (P < 0.05). Autophagy blockage by either bafilomycin A1 or ATG5 siRNA significantly abrogated the anti-apoptotic effect of HCM (P < 0.05), demonstrating that HCM exerts its anti-apoptotic effect by promoting autophagy. The effect of HCM - reduction of cell apoptosis and promotion of autophagic process - was also demonstrated in a mouse model. CONCLUSIONS: HP appears to induce ASCs to release a secretome with enhanced anti-apoptotic effects by promoting the autophagic process of ASCs.


Asunto(s)
Tejido Adiposo , Secretoma , Adipocitos , Tejido Adiposo/metabolismo , Animales , Autofagia , Humanos , Ratones , Células Madre
6.
J Biol Chem ; 295(44): 14878-14892, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32839272

RESUMEN

Adipocyte browning appears to be a potential therapeutic strategy to combat obesity and related metabolic disorders. Recent studies have shown that apelin, an adipokine, stimulates adipocyte browning and has negative cross-talk with angiotensin II receptor type 1 (AT1 receptor) signaling. Here, we report that losartan, a selective AT1 receptor antagonist, induces browning, as evidenced by an increase in browning marker expression, mitochondrial biogenesis, and oxygen consumption in murine adipocytes. In parallel, losartan up-regulated apelin expression, concomitant with increased phosphorylation of protein kinase B and AMP-activated protein kinase. However, the siRNA-mediated knockdown of apelin expression attenuated losartan-induced browning. Angiotensin II cotreatment also inhibited losartan-induced browning, suggesting that AT1 receptor antagonism-induced activation of apelin signaling may be responsible for adipocyte browning induced by losartan. The in vivo browning effects of losartan were confirmed using both C57BL/6J and ob/ob mice. Furthermore, in vivo apelin knockdown by adeno-associated virus carrying-apelin shRNA significantly inhibited losartan-induced adipocyte browning. In summary, these data suggested that AT1 receptor antagonism by losartan promotes the browning of white adipocytes via the induction of apelin expression. Therefore, apelin modulation may be an effective strategy for the treatment of obesity and its related metabolic disorders.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Apelina/biosíntesis , Losartán/farmacología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Células 3T3-L1 , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Animales , Apelina/genética , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
7.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799789

RESUMEN

It is challenging to overcome the low response rate of everolimus in the treatment of patients with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However, the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim, the miRNAs were selected that showed the most significant variation in expression according to the mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific miRNAs were determined in the processes of the treatment modalities. Compared to individual monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)-the predicted target of miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Everolimus/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Morfolinas/farmacología , Pirimidinas/farmacología , Antineoplásicos/farmacología , Apoptosis/genética , Autofagia/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo
8.
J Struct Biol ; 209(1): 107401, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605770

RESUMEN

Annexins are soluble cytosolic proteins that bind to cell membranes. Annexin A5 self-assembles into a two-dimensional (2D) array and prevents cell rupture by attaching to damaged membranes. However, this process is not fully understood at the molecular level. In this study, we determined the crystal structures of annexin A5 with and without calcium (Ca2+) and confirmed the Ca2+-dependent outward motion of a tryptophan residue. Strikingly, the two structures exhibited the same crystal packing and 2D arrangement into a p3 lattice, which agrees well with the results of low-resolution structural imaging. High-resolution structures indicated that a three-fold interaction near the tryptophan residue is important for mediating the formation of the p3 lattice. A hypothesis on the promotion of p3 lattice formation by phosphatidyl serine (PS) is also suggested. This study provides molecular insight into how annexins modulate the physical properties of cell membranes as a function of Ca2+ concentration and the phospholipid composition of the membrane.


Asunto(s)
Anexina A5/ultraestructura , Membrana Celular/ultraestructura , Unión Proteica/genética , Conformación Proteica , Anexina A5/química , Anexina A5/genética , Calcio/química , Calcio/metabolismo , Señalización del Calcio/genética , Membrana Celular/química , Cristalografía por Rayos X , Humanos , Pliegue de Proteína , Triptófano/química , Triptófano/genética
9.
Small ; 16(1): e1905868, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31788955

RESUMEN

Beyond a traditional view that metal nanoparticles formed upon electrochemical reaction are inactive against lithium, recently their electrochemical participations are manifested and elucidated as catalytic and interfacial effects. Here, ruthenium metal composed of ≈5 nm nanoparticles is prepared and the pure ruthenium as a lithium-ion battery anode for complete understanding on anomalous lithium storage reaction mechanism is designed. In particular, the pure metal electrode is intended for eliminating the electrochemical reaction-derived Li2 O phase accompanied by catalytic Li2 O decomposition and the interfacial lithium storage at Ru/Li2 O phase boundary, and thereby focusing on the ruthenium itself in exploring its electrochemical reactivity. Intriguingly, unusual lithium storage not involving redox reactions with electron transfer but leading to lattice expansion is identified in the ruthenium electrode. Size-dependent charge redistribution at surface enables additional lithium adsorption to occur on the inactive but more environmentally sensitive nanoparticles, providing innovative insight into dynamic electrode environments in rechargeable lithium chemistry.

10.
Proc Natl Acad Sci U S A ; 114(45): 11926-11931, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078297

RESUMEN

Insulin resistance, a key etiological factor in metabolic syndrome, is closely linked to ectopic lipid accumulation and increased intracellular Ca2+ concentrations in muscle and liver. However, the mechanism by which dysregulated intracellular Ca2+ homeostasis causes insulin resistance remains elusive. Here, we show that increased intracellular Ca2+ acts as a negative regulator of insulin signaling. Chronic intracellular Ca2+ overload in hepatocytes during obesity and hyperlipidemia attenuates the phosphorylation of protein kinase B (Akt) and its key downstream signaling molecules by inhibiting membrane localization of pleckstrin homology (PH) domains. Pharmacological approaches showed that elevated intracellular Ca2+ inhibits insulin-stimulated Akt phosphorylation and abrogates membrane localization of various PH domain proteins such as phospholipase Cδ and insulin receptor substrate 1, suggesting a common mechanism inhibiting the membrane targeting of PH domains. PH domain-lipid overlay assays confirmed that Ca2+ abolishes the binding of various PH domains to phosphoinositides (PIPs) with two adjacent phosphate groups, such as PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 Finally, thermodynamic analysis of the binding interaction showed that Ca2+-mediated inhibition of targeting PH domains to the membrane resulted from the tight binding of Ca2+ rather than PH domains to PIPs forming Ca2+-PIPs. Thus, Ca2+-PIPs prevent the recognition of PIPs by PH domains, potentially due to electrostatic repulsion between positively charged side chains in PH domains and the Ca2+-PIPs. Our findings provide a mechanistic link between intracellular Ca2+ dysregulation and Akt inactivation in insulin resistance.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Resistencia a la Insulina/fisiología , Fosfatidilinositoles/metabolismo , Dominios Homólogos a Pleckstrina/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Dieta Alta en Grasa , Intolerancia a la Glucosa/patología , Hiperinsulinismo/patología , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/patología , Fosfolipasa C delta/metabolismo , Fosforilación , Unión Proteica
11.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854415

RESUMEN

Here, we provide the possibility of a novel chemotherapeutic agent against gastric cancer cells, comprising the combination of 5-fluorouracil (5-FU) and a mitochondria-targeting self-assembly peptide, which is a phenylalanine dipeptide with triphenyl phosphonium (Mito-FF). The anticancer effects and mechanisms of 5-FU and Mito-FF, individually or in combination, were compared through both in vitro and in vivo models of gastric cancer. Our experiments consistently demonstrated that the 5-FU and Mito-FF combination therapy was superior to monotherapy with either, as manifested by both higher reduction of proliferation as well as an induction of apoptotic cell death. Interestingly, we found that combining 5-FU with Mito-FF leads to a significant increase of reactive oxygen species (ROS) and reduction of antioxidant enzymes in gastric cancer cells. Moreover, the inhibition of ROS abrogated the pro-apoptotic effects of combination therapy, suggesting that enhanced oxidative stress could be the principal mechanism of the action of combination therapy. We conclude that the combination of 5-FU and Mito-FF exerts potent antineoplastic activity against gastric cancer cells, primarily by promoting ROS generation and suppressing the activities of antioxidant enzymes.


Asunto(s)
Dipéptidos/administración & dosificación , Fluorouracilo/administración & dosificación , Mitocondrias/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Catalasa/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dipéptidos/química , Dipéptidos/farmacología , Sinergismo Farmacológico , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/genética , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Superóxido Dismutasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143463

RESUMEN

This paper aims to validate if intrapancreatic injection of penicillin G can enhance hardness and suture holding capacity (SHC) of the pancreas through prompting the fibrosis process. Soft pancreatic texture is constantly mentioned as one of the most contributory predictors of postoperative pancreatic fistula (POPF). Soft pancreas has poor SHC and higher incidence of parenchymal tearing, frequently leading to POPF. From a library of 114 antibiotic compounds, we identified that penicillin G substantially enhanced pancreatic hardness and SHC in experimental mice. Specifically, we injected penicillin G directly into the pancreas. On determined dates, we measured the pancreatic hardness and SHC, respectively, and performed molecular and histological examinations for estimation of the degree of fibrosis. The intrapancreatic injection of penicillin G activated human pancreatic stellate cells (HPSCs) to produce various fibrotic materials such as transforming growth factor-ß1 (TGF-ß1) and metalloproteinases-2. The pancreatic hardness and SHC were increased to the maximum at the second day after injection and then it gradually subsided demonstrating its reversibility. Pretreatment of mice with SB431542, an inhibitor of the TGF-ß1 receptor, before injecting penicillin G intrapancreatically, significantly abrogated the increase of both pancreatic hardness and SHC caused by penicillin G. This suggested that penicillin G promotes pancreatic fibrosis through the TGF-ß1 signaling pathway. Intrapancreatic injection of penicillin G promotes pancreatic hardness and SHC by enhancing pancreatic fibrosis. We thus think that penicillin G could be utilized to prevent and minimize POPF, after validating its actual effectiveness and safety by further studies.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo/efectos adversos , Páncreas/efectos de los fármacos , Páncreas/cirugía , Fístula Pancreática/prevención & control , Penicilina G/administración & dosificación , Complicaciones Posoperatorias/prevención & control , Animales , Antibacterianos/administración & dosificación , Benzamidas/farmacología , Dioxoles/farmacología , Modelos Animales de Enfermedad , Fibrosis , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Fístula Pancreática/etiología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Periodo Posoperatorio , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
13.
J Transl Med ; 17(1): 195, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182117

RESUMEN

BACKGROUND: Although methyl-tertiary butyl ether (MTBE) is the only clinical topical agent for gallstone dissolution, its use is limited by its side effects mostly arising from a relatively low boiling point (55 °C). In this study, we developed the gallstone-dissolving compound containing an aromatic moiety, named 2-methoxy-6-methylpyridine (MMP) with higher boiling point (156 °C), and compared its effectiveness and toxicities with MTBE. METHODS: The dissolubility of MTBE and MMP in vitro was determined by placing human gallstones in glass containers with either solvent and, then, measuring their dry weights. Their dissolubility in vivo was determined by comparing the weights of solvent-treated gallstones and control (dimethyl sulfoxide)-treated gallstones, after directly injecting each solvent into the gallbladder in hamster models with cholesterol and pigmented gallstones. RESULTS: In the in vitro dissolution test, MMP demonstrated statistically higher dissolubility than did MTBE for cholesterol and pigmented gallstones (88.2% vs. 65.7%, 50.8% vs. 29.0%, respectively; P < 0.05). In the in vivo experiments, MMP exhibited 59.0% and 54.3% dissolubility for cholesterol and pigmented gallstones, respectively, which were significantly higher than those of MTBE (50.0% and 32.0%, respectively; P < 0.05). The immunohistochemical stains of gallbladder specimens obtained from the MMP-treated hamsters demonstrated that MMP did not significantly increase the expression of cleaved caspase 9 or significantly decrease the expression of proliferation cell nuclear antigen. CONCLUSIONS: This study demonstrated that MMP has better potential than does MTBE in dissolving gallstones, especially pigmented gallstones, while resulting in lesser toxicities.


Asunto(s)
Cálculos Biliares/tratamiento farmacológico , Fármacos Gastrointestinales/administración & dosificación , Piridinas/administración & dosificación , Solventes/administración & dosificación , Administración Tópica , Animales , Células CHO , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero , Femenino , Cálculos Biliares/patología , Fármacos Gastrointestinales/efectos adversos , Humanos , Mesocricetus , Ratones , Ratones Endogámicos ICR , Células 3T3 NIH , Piridinas/efectos adversos , Solventes/efectos adversos , Células Vero , Pez Cebra
14.
J Surg Res ; 241: 254-263, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31035140

RESUMEN

BACKGROUND: Clinically, liver fibrosis and cholestasis are two major disease entities, ultimately leading to hepatic failure. Although autophagy plays a substantial role in the pathogenesis of these diseases, its precise mechanism has not been determined yet. MATERIALS AND METHODS: Mouse models of liver fibrosis or cholestasis were obtained after the serial administration of thioacetamide (TAA) or surgical bile duct ligation (BDL), respectively. Then, after obtaining liver specimens at specific time points, we compared the expression of makers related to apoptosis (cleaved caspases), inflammation (CD68), necrosis (high-mobility group box 1), phospho-c-Jun N-terminal kinase (p-JNK), and autophagy (microtubule-associated protein light chain 3B and p62) in the fibrotic or cholestatic mouse livers, by polymerase chain reaction, Western blot analysis, immunohistochemistry, and immunofluorescence. RESULTS: Although cholestatic livers exhibited the tendency of progressively increasing the expression of most apoptosis-related markers (cleaved caspases), it was not prominent when it was compared with the tendency found in the livers of TAA-treated mice. Contrastingly, the necrosis-related factor (high-mobility group box 1) was significantly increased in the livers of BDL mice over time, reaching their peak values on day 7 after BDL. In addition, the inflammation-related factor (CD68) was highly expressed in BDL mice compared with TAA-treated mice over time. Autophagy marker studies indicated that autophagy was upregulated in fibrotic livers, whereas it was downregulated in cholestatic livers. We also observed mild to moderate activation of p-JNK in the livers of TAA-treated mice, whereas significantly higher p-JNK activation was detected in the livers of BDL mice. CONCLUSIONS: Unlike TAA-treated mice, BDL mice exhibited higher expression of the markers related with inflammation and necrosis, especially including p-JNK, while maintaining low levels of autophagic process. Therefore, obstructive cholestasis is characterized by higher p-JNK activation, which could be related with marked necrotic cell death resulting from extensive inflammation and little chance of compensatory autophagy.


Asunto(s)
Autofagia , Colestasis/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cirrosis Hepática Experimental/inmunología , Hígado/patología , Animales , Conductos Biliares/cirugía , Colestasis/etiología , Colestasis/patología , Hepatocitos/inmunología , Hepatocitos/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Ligadura , Hígado/citología , Hígado/inmunología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/patología , Masculino , Ratones , Necrosis/inmunología , Necrosis/patología , Fosforilación/inmunología , Tioacetamida/toxicidad
15.
J Korean Med Sci ; 34(45): e273, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31760709

RESUMEN

BACKGROUND: Secretome refers to the total set of molecules secreted or surface-shed by stem cells. The limitations of stem cell research have led numerous investigators to turn their attention to the use of secretome instead of stem cells. In this study, we intended to reinforce antifibrotic properties of the secretome released from adipose-derived stem cells (ASCs) transfected with miR-214. METHODS: We generated miR-214-transfected ASCs, and extracted the secretome (miR214-secretome) from conditioned media of the transfected ASCs through a series of ultrafiltrations. Subsequently, we intravenously injected the miR-214-secretome into mice with liver fibrosis, and determined the effects of miR-214-secretome on liver fibrosis. RESULTS: Compared with that by naïve secretome, liver fibrosis was ameliorated by intravenous infusion of miR-214-secretome into mice with liver fibrosis, which was demonstrated by significantly lower expression of fibrosis-related markers (alpha-smooth muscle actin, transforming growth factor-ß, and metalloproteinases-2) in the livers as well as lower fibrotic scores in the special stained livers compared with naïve secretome. The infusion of miR-214-secretome also led to lesser local and systemic inflammation, higher expression of an antioxidant enzyme (superoxide dismutase), and higher liver proliferative and synthetic function. CONCLUSION: MicroRNA-214 transfection stimulates ASCs to release the secretome with higher antifibrotic and anti-inflammatory properties. miR-214-secretome is thus expected to be one of the prominent ways of overcoming liver fibrosis, if further studies consistently validate its safety and efficiency.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Actinas/metabolismo , Tejido Adiposo/citología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transfección
16.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717375

RESUMEN

Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.


Asunto(s)
Tejido Adiposo/citología , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteoma/uso terapéutico , Células Madre/metabolismo , Regulación hacia Arriba , Animales , Biomarcadores/metabolismo , Supervivencia Celular , Hepatectomía , Humanos , Inflamación/patología , Hígado/enzimología , Hígado/patología , Hígado/cirugía , Regeneración Hepática , Masculino , Ratones Endogámicos BALB C , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847135

RESUMEN

Tumor necrosis factor-α (TNF-α)-driven inflammatory reaction plays a crucial role in the initiation of liver fibrosis. We herein attempted to design genetically engineered adipose-derived stem cells (ASCs) producing etanercept (a potent TNF-α inhibitor), and to determine the anti-fibrotic potential of the secretome released from the etanercept-synthesizing ASCs (etanercept-secretome). First, we generated the etanercept-synthesizing ASCs by transfecting the ASCs with mini-circle plasmids containing the gene insert encoding for etanercept. We subsequently collected the secretory material released from the etanercept-synthesizing ASCs and determined its anti-fibrotic effects both in vitro (in thioacetamide [TAA]-treated AML12 and LX2 cells) and in vivo (in TAA-treated mice) models of liver fibrosis. We observed that while etanercept-secretome increased the viability of the TAA-treated AML12 hepatocytes (p = 0.021), it significantly decreased the viability of the TAA-treated LX2 HSCs (p = 0.021). In the liver of mice with liver fibrosis, intravenous administration of the etanercept-secretome induced significant reduction in the expression of both fibrosis-related and inflammation-related markers compared to the control group (all Ps < 0.05). The etanercept-secretome group also showed significantly lower serum levels of liver enzymes as well as pro-inflammatory cytokines, such as TNF-α (p = 0.020) and IL-6 (p = 0.021). Histological examination of the liver showed the highest reduction in the degree of fibrosis in the entanercept-secretome group (p = 0.006). Our results suggest that the administration of etanercept-secretome improves liver fibrosis by inhibiting TNF-α-driven inflammation in the mice with liver fibrosis. Thus, blocking TNF-α-driven inflammation at the appropriate stage of liver fibrosis could be an efficient strategy to prevent fibrosis.


Asunto(s)
Tejido Adiposo/metabolismo , Etanercept/metabolismo , Cirrosis Hepática/prevención & control , Células Madre/metabolismo , Tejido Adiposo/patología , Línea Celular , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Células Madre/patología , Tioacetamida/efectos adversos , Tioacetamida/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Gastroenterology ; 152(5): 1174-1186, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27956229

RESUMEN

BACKGROUND & AIMS: Mesenchymal stem cells (MSCs) mediate tissue repair and might be used to prevent or reduce liver fibrosis. However, little is known about the anti-fibrotic factors secreted from MSCs or their mechanisms. METHODS: Umbilical cord-derived MSCs (UCMSCs) were differentiated into hepatocyte-like cells (hpUCMSCs), medium was collected, and secretome proteins were identified and quantified using nanochip-liquid chromatography/quadrupole time-of-flight mass spectrometry. Liver fibrosis was induced in mice by intraperitoneal injection of thioacetamide or CCl4; some mice were then given injections of secretomes or proteins. Liver tissues were collected and analyzed by histology or polymerase chain reaction array to analyze changes in gene expression patterns. We analyzed the effects of MSC secretomes and potential anti-fibrotic proteins on transforming growth factor ß 1 (TGFß1)-mediated activation of human hepatic stellate cell (HSC) lines (hTert-HSC and LX2) and human primary HSCs. Liver tissues were collected from 16 patients with liver cirrhosis and 16 individuals without cirrhosis (controls) in Korea and analyzed by immunohistochemistry and immunoblots. RESULTS: In mice with fibrosis, accumulation of extracellular matrix proteins was significantly reduced 3 days after injecting secretomes from UCMSCs, and to a greater extent from hpUCMSCs; numbers of activated HSCs that expressed the myogenic marker α-smooth muscle actin (α-SMA, encoded by ACTA2 [actin, alpha 2, smooth muscle]) were also reduced. Secretomes from UCMSCs, and to a greater extent from hpUCMSCs, reduced liver expression of multiple fibrotic factors, collagens, metalloproteinases, TGFß, and Smad proteins in the TGFß signaling pathways. In HSC cell lines and primary HSCs, TGFß1-stimulated upregulation of α-SMA was significantly inhibited (and SMAD2 phosphorylation reduced) by secretomes from UCMSCs, and to a greater extent from hpUCMSCs. We identified 32 proteins in secretomes of UCMSCs that were more highly concentrated in secretomes from hpUCMSCs and inhibited TGFß-mediated activation of HSCs. One of these, milk fat globule-EGF factor 8 (MFGE8), was a strong inhibitor of activation of human primary HSCs. We found MFGE8 to down-regulate expression of TGFß type I receptor by binding to αvß3 integrin on HSCs and to be secreted by MSCs from umbilical cord, teeth, and bone marrow. In mice, injection of recombinant human MFGE8 had anti-fibrotic effects comparable to those of the hpUCMSC secretome, reducing extracellular matrix deposition and HSC activation. Co-injection of an antibody against MFGE8 reduced the anti-fibrotic effects of the hpUCMSC secretome in mice. Levels of MFGE8 were reduced in cirrhotic liver tissue from patients compared with controls. CONCLUSIONS: MFGE8 is an anti-fibrotic protein in MSC secretomes that strongly inhibits TGFß signaling and reduces extracellular matrix deposition and liver fibrosis in mice.


Asunto(s)
Antígenos de Superficie/metabolismo , Cirrosis Hepática/metabolismo , Proteínas de la Leche/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas , Hepatocitos , Humanos , Integrina alfaVbeta3/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Metaboloma , Metaloproteasas/metabolismo , Ratones , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad2/metabolismo , Tioacetamida/toxicidad , Factor de Crecimiento Transformador beta1/metabolismo
19.
J Struct Biol ; 195(1): 113-22, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27062940

RESUMEN

The optimal balance of cellular nucleotides and the efficient elimination of non-canonical nucleotides are critical to avoiding erroneous mutation during DNA replication. One such mechanism involves the degradation of excessive or abnormal nucleotides by nucleotide-hydrolyzing enzymes. YpgQ contains the histidine-aspartate (HD) domain that is involved in the hydrolysis of nucleotides or nucleic acids, but the enzymatic activity and substrate specificity of YpgQ have never been characterized. Here, we unravel the catalytic activity and structural features of YpgQ to report the first Mn(2+)-dependent pyrophosphohydrolase that hydrolyzes (deoxy)ribonucleoside triphosphate [(d)NTP] to (deoxy)ribonucleoside monophosphate and pyrophosphate using the HD domain. YpgQ from Bacillus subtilis (bsYpgQ) displays a helical structure and assembles into a unique dimeric architecture that has not been observed in other HD domain-containing proteins. Each bsYpgQ monomer accommodates a metal ion and a nucleotide substrate in a cavity located between the N- and C-terminal lobes. The metal cofactor is coordinated by the canonical residues of the HD domain, namely, two histidine residues and two aspartate residues, and is positioned in close proximity to the ß-phosphate group of the nucleotide, allowing us to propose a nucleophilic attack mechanism for the nucleotide hydrolysis reaction. YpgQ enzymes from other bacterial species also catalyze pyrophosphohydrolysis but exhibit different substrate specificity. Comparative structural and mutational studies demonstrated that residues outside the major substrate-binding site of bsYpgQ are responsible for the species-specific substrate preference. Taken together, our structural and biochemical analyses highlight the substrate-recognition mode and catalysis mechanism of YpgQ in pyrophosphohydrolysis.


Asunto(s)
Bacillus cereus/enzimología , Nucleótidos de Desoxiguanina/metabolismo , Manganeso/química , Monoéster Fosfórico Hidrolasas/química , Sitios de Unión , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
20.
Acta Radiol ; 56(9): 1051-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25270373

RESUMEN

BACKGROUND: Biopsy remains the current gold-standard for assessing non-alcoholic fatty liver disease (NAFLD). To develop a non-invasive means of assessing the disease, 31P magnetic resonance spectroscopy (31P-MRS) has been explored, but the severe spectral overlaps and low signal-to-noise-ratio in 31P-MRS spectra at clinical field strength are clearly limiting factors. PURPOSE: To investigate potential advantages of high resolution in vivo 31P-MRS in assessing NAFLD. MATERIAL AND METHODS: The study was conducted at 9.4T in control and carbon tetrachloride (CCl4)-treated rats. Rats were divided according to histopathologic findings into a control group (n = 15), a non-alcoholic steatohepatitis group (n = 17), and a cirrhosis group (n = 12). Data were presented with different reference peaks that are commonly used for peak normalization such as total phosphorous signal, phosphomonoester + phosphodiester (PME + PDE), and nucleotide triphosphate (NTP). Then, multivariate analyses were performed. RESULTS: In all spectra PME and PDE were well resolved into phosphoethanolamine (PE) and phosphocholine (PC), and into glycerophosphorylethanolamine (GPE) and glycerophosphorylcholine (GPC), respectively. Those MRS measures quantifiable only in highly resolved spectra had higher correlations with histology than those conventional MRS measures such as PME, PDE, and NTP. The optimized partial least-squares discriminant analysis (PLS-DA) model correctly classified 79% (22/28) of the rats in the training set and correctly predicted 69% (11/16) of the rats in the test set. CONCLUSION: PE, PC, GPE, GPC, and nicotinamide adenine dinucleotide phosphate (NADP) that can be separately quantifiable in highly resolved spectra may further improve the potential efficacy of 31P-MRS in the diagnosis of NAFLD.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Animales , Modelos Animales de Enfermedad , Etanolaminas/metabolismo , Glicerilfosforilcolina/metabolismo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Masculino , NADP/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidiletanolaminas/metabolismo , Fósforo , Fosforilcolina/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA