Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(50): 31993-32004, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33262282

RESUMEN

Effective cancer prevention requires the discovery and intervention of a factor critical to cancer development. Here we show that ovarian progesterone is a crucial endogenous factor inducing the development of primary tumors progressing to metastatic ovarian cancer in a mouse model of high-grade serous carcinoma (HGSC), the most common and deadliest ovarian cancer type. Blocking progesterone signaling by the pharmacologic inhibitor mifepristone or by genetic deletion of the progesterone receptor (PR) effectively suppressed HGSC development and its peritoneal metastases. Strikingly, mifepristone treatment profoundly improved mouse survival (∼18 human years). Hence, targeting progesterone/PR signaling could offer an effective chemopreventive strategy, particularly in high-risk populations of women carrying a deleterious mutation in the BRCA gene.


Asunto(s)
Proteína BRCA1/genética , Cistadenocarcinoma Seroso/prevención & control , Mifepristona/farmacología , Neoplasias Ováricas/prevención & control , Progesterona/antagonistas & inhibidores , Adulto , Animales , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Cistadenocarcinoma Seroso/química , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Modelos Animales de Enfermedad , Estradiol/administración & dosificación , Femenino , Humanos , Ratones , Persona de Mediana Edad , Mifepristona/uso terapéutico , Mutación , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Neoplasias Ováricas/inducido químicamente , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/patología , Ovario/cirugía , Progesterona/administración & dosificación , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Salpingooforectomía , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
2.
PLoS Genet ; 16(6): e1008808, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497036

RESUMEN

Metastasis is responsible for 90% of human cancer mortality, yet it remains a challenge to model human cancer metastasis in vivo. Here we describe mouse models of high-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), the most common and deadliest human ovarian cancer type. Mice genetically engineered to harbor Dicer1 and Pten inactivation and mutant p53 robustly replicate the peritoneal metastases of human HGSC with complete penetrance. Arising from the fallopian tube, tumors spread to the ovary and metastasize throughout the pelvic and peritoneal cavities, invariably inducing hemorrhagic ascites. Widespread and abundant peritoneal metastases ultimately cause mouse deaths (100%). Besides the phenotypic and histopathological similarities, mouse HGSCs also display marked chromosomal instability, impaired DNA repair, and chemosensitivity. Faithfully recapitulating the clinical metastases as well as molecular and genomic features of human HGSC, this murine model will be valuable for elucidating the mechanisms underlying the development and progression of metastatic ovarian cancer and also for evaluating potential therapies.


Asunto(s)
Antineoplásicos/farmacología , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/patología , Neoplasias Peritoneales/genética , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inestabilidad Cromosómica , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/secundario , ARN Helicasas DEAD-box/genética , Reparación del ADN , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Ensayos de Selección de Medicamentos Antitumorales/métodos , Estudios de Factibilidad , Femenino , Humanos , Ratones , Ratones Noqueados , Mutación , Clasificación del Tumor , Metástasis de la Neoplasia/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/genética , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/secundario , Cultivo Primario de Células , Ribonucleasa III/genética , Proteína p53 Supresora de Tumor/genética
3.
Gastric Cancer ; 21(6): 956-967, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29704153

RESUMEN

BACKGROUND: Gastrokine 1 (GKN1) plays important roles in maintaining mucosal homeostasis, and in regulating cell proliferation and differentiation. Here, we determined whether GKN1 is a potential theragnostic marker for gastric cancer. METHODS: We identified GKN1 binding proteins using the protein microarray assay and investigated whether GKN1 is one of the exosomal cargo proteins by western blot, immunoprecipitation, and immunofluorescent assays. Cell proliferation and apoptosis were analyzed by MTT, BrdU incorporation, flow cytometry, and western blot assays. We further validated the functional relevance of exosomal GKN1 in MKN1-injected xenograft mice. The possibility of serum GKN1 as a diagnostic marker for gastric cancer was determined by ELISA assay. RESULTS: In protein microarray assay, GKN1 binding to 27 exosomal proteins was clearly observed. GKN1 was expressed in exosomes derived from HFE-145 gastric epithelial cells by western blot and immunofluorescent assays, but not in exosomes from AGS and MKN1 gastric cancer cells. Exosomes carrying GKN1 inhibited cell proliferation and induced apoptosis in both AGS and MKN1 cells, and exosomes carrying GKN1-treated nude mice-bearing MKN1 xenograft tumors exhibited significantly reduced tumor volume and tumor weight. Silencing of clathrin markedly down-regulated the internalization of exosomal GKN1. Interestingly, serum GKN1 concentrations in patients with gastric cancer were significantly lower than those in healthy individuals and patients with colorectal and hepatocellular carcinomas. CONCLUSIONS: The GKN1 is secreted and internalized in the gastric epithelium by exosome-driven transfer, which inhibits gastric tumorigenesis and supports the clinical application of GKN1 protein in gastric cancer diagnosis and treatment.


Asunto(s)
Hormonas Peptídicas/metabolismo , Neoplasias Gástricas/sangre , Animales , Biomarcadores de Tumor/sangre , Línea Celular Tumoral , Proliferación Celular , Clatrina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Exosomas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones Endogámicos BALB C , Terapia Molecular Dirigida/métodos , Hormonas Peptídicas/sangre , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Gastric Cancer ; 20(2): 274-285, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27250838

RESUMEN

BACKGROUND: We investigated whether GKN1, a gastric tumor suppressor, contributes to the progression of gastric cancer by regulating RhoA expression. METHODS: We analyzed the expression of GKN1, RhoA, miR-185, and miR-34a in 35 gastric cancer tissues, and compared their expression with T category and TNM stage. Cell migration and invasion, as well as the expression of epithelial-to-mesenchymal transition (EMT)-related proteins, were assessed in GKN1- and RhoA small interfering RNA (siRhoA)-transfected and recombinant-GKN1-treated AGS and MKN1 gastric cancer cells. RESULTS: Expression of RhoA protein and messenger RNA (mRNA) was increased in 15 (42.9 %) and 17 (48.6 %) of 35 gastric cancer tissues respectively, and was associated with higher T category and TNM stage. GKN1 expression was significantly decreased in 27 gastric cancers (77.1 %) with a higher T category, and was inversely correlated with RhoA mRNA expression. In AGS and MKN1 cells, GKN1 expression increased miR-185 and miR-34a expression and reduced RhoA mRNA and protein expression. A positive relationship between GKN1 and miR-34a and miR-185 expression and an inverse relationship between miR-34a and RhoA expression were observed in gastric cancer tissues. Cell migration and invasiveness were markedly decreased in GKN1- and siRhoA-transfected cells. GKN1 expression and silencing of RhoA decreased the expression of the proteins Snail, Slug, and vimentin. Furthermore, miR-185 and miR-34a silencing in MKN1 cells transfected with GKN1 stimulated cell migration and invasion, and increased the expression of EMT-related proteins. CONCLUSION: Our data suggest that GKN1 may inhibit gastric cancer cell migration and invasion by downregulating RhoA expression in a miR-185- and miR-34a-dependent manner.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Movimiento Celular , MicroARNs/genética , Hormonas Peptídicas/farmacología , Neoplasias Gástricas/patología , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Apoptosis , Biomarcadores de Tumor/genética , Western Blotting , Adhesión Celular , Proliferación Celular , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Células Tumorales Cultivadas , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
Gastric Cancer ; 20(5): 772-783, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28150071

RESUMEN

BACKGROUND: GKN2 and TFF1 form a heterodimer that is only generated in the mucus-secreting cells of the normal stomach. The formation of this heterodimer is frequently disrupted in gastric cancer. However, the precise roles of GKN2 alone and in the heterodimer with TFF1 as well as the contributions of GKN2 and the heterodimer to gastric carcinogenesis are poorly understood. METHODS: Cell viability, proliferation, and apoptosis were analyzed in AGS, MKN1, MKN28, and MKN45 gastric cancer cells transfected with GKN2 and/or TFF1 using MTT, BrdU incorporation, and apoptosis assays, respectively. In addition, cell viability was examined in HFE-145 non-neoplastic gastric epithelial cells after GKN2 and/or TFF1 silencing. Furthermore, the cell cycle and the expression of cell cycle and apoptosis related proteins were assessed. The interaction between GKN2 and TFF1 was confirmed by co-immunoprecipitation. Immunohistochemistry was employed to explore TFF1 expression in 169 gastric cancer tissues. RESULTS: Co-transfection with GKN2 and TFF1 significantly inhibited cell viability and proliferation by inducing G1/S cell cycle arrest and suppressing positive cell cycle regulators. Simultaneous knockdown of GKN2 and TFF1 in HFE-145 cells resulted in markedly increased cell viability. Moreover, the interaction of GKN2 and TFF1 promoted cell death by enhancing caspase-3/7 activity and upregulating pro-apoptotic proteins. At the mRNA level, GKN2 and TFF1 were found to be positively correlated in non-tumor and tumor samples. Immunohistochemistry revealed loss of TFF1 expression in 128 (75.73%) of 169 gastric cancers. There was a borderline-significant association between GKN2 and TFF1 protein expression in gastric cancers (P = 0.0598). CONCLUSION: Collectively, our data demonstrated that the interaction between GKN2 and TFF1 can have synergistic antiproliferative and pro-apoptotic effects on gastric cancer.


Asunto(s)
Apoptosis/genética , Proteínas Portadoras/genética , Neoplasias Gástricas/genética , Factor Trefoil-1/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , ARN Mensajero/metabolismo , Neoplasias Gástricas/patología , Transfección
6.
Mod Pathol ; 29(2): 194-208, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26743476

RESUMEN

Intestinal metaplasia in gastric mucosa is considered a preneoplastic lesion that progresses to gastric cancer. However, the molecular networks underlying this lesion formation are largely unknown. NKX6.3 is known to be an important regulator in gastric mucosal epithelial differentiation. In this study, we characterized the effects of NKX6.3 that may contribute to gastric intestinal metaplasia. NKX6.3 expression was significantly reduced in gastric mucosae with intestinal metaplasia. The mRNA expression levels of both NKX6.3 and CDX2 predicted the intestinal metaplasia risk, with an area under the receiver operating characteristic curve value of 0.9414 and 0.9971, respectively. Notably, the NKX6.3 expression level was positively and inversely correlated with SOX2 and CDX2, respectively. In stable AGS(NKX6.3) and MKN1(NKX6.3) cells, NKX6.3 regulated the expression of CDX2 and SOX2 by directly binding to the promoter regions of both genes. Nuclear NKX6.3 expression was detected only in gastric epithelial cells without intestinal metaplasia. Furthermore, NKX6.3-induced TWSG1 bound to BMP4 and inhibited BMP4-binding activity to BMPR-II. These data suggest that NKX6.3 might function as a master regulator of gastric differentiation by affecting SOX2 and CDX2 expression and the NKX6.3 inactivation may result in intestinal metaplasia in gastric epithelial cells.


Asunto(s)
Transdiferenciación Celular , Transformación Celular Neoplásica/genética , Silenciador del Gen , Proteínas de Homeodominio/genética , Lesiones Precancerosas/genética , Factores de Transcripción SOXB1/genética , Neoplasias Gástricas/genética , Factores de Transcripción/genética , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Área Bajo la Curva , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Factor de Transcripción CDX2 , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Metaplasia , Ratones Endogámicos C57BL , Fenotipo , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/microbiología , Lesiones Precancerosas/patología , Regiones Promotoras Genéticas , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC , Medición de Riesgo , Factores de Riesgo , Factores de Transcripción SOXB1/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo , Transfección
7.
Gastric Cancer ; 19(2): 381-391, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752269

RESUMEN

BACKGROUND: Gastrokine 1 (GKN1) acts as a gastric tumor suppressor. Here, we investigated whether GKN1 contributes to the maintenance of gastric mucosal homeostasis by regulating gastrin-induced gastric epithelial cell growth. METHODS: We assessed the effects of gastrin and GKN1 on cell proliferation in stable AGS(GKN1) and MKN1(GKN1) gastric cancer cell lines and HFE-145 nonneoplastic epithelial cells. Cell viability and proliferation were analyzed by MTT and BrdU incorporation assays, respectively. Cell cycle and expression of growth factor receptors were examined by flow cytometry and Western blot analyses. RESULTS: Gastrin treatment stimulated a significant time-dependent increase in cell viability and proliferation in AGS(mock) and MKN1(mock), but not in HFE-145, AGS(GKN1), and MKN1(GKN1), cells, which stably expressed GKN1. Additionally, gastrin markedly increased the S-phase cell population, whereas GKN1 significantly inhibited the effect of gastrin by regulating the expression of G1/S cell-cycle regulators. Furthermore, gastrin induced activation of the NF-kB and ß-catenin signaling pathways and increased the expression of CCKBR, EGFR, and c-Met in AGS and MKN1 cells. However, GKN1 completely suppressed these effects of gastrin via downregulation of gastrin/CCKBR/growth factor receptor expression. Moreover, GKN1 reduced gastrin and CCKBR mRNA expression in AGS and MKN1 cells, and there was an inverse correlation between GKN1 and gastrin, as well as between GKN1 and CCKBR mRNA expression in noncancerous gastric mucosae. CONCLUSION: These data suggest that GKN1 may contribute to the maintenance of gastric epithelial homeostasis and inhibit gastric carcinogenesis by downregulating the gastrin-CCKBR signaling pathway.


Asunto(s)
Mucosa Gástrica/metabolismo , Gastrinas/metabolismo , Hormonas Peptídicas/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Mucosa Gástrica/citología , Mucosa Gástrica/patología , Gastrinas/genética , Gastrinas/farmacología , Regulación de la Expresión Génica , Humanos , FN-kappa B/metabolismo , Hormonas Peptídicas/metabolismo , Receptor de Colecistoquinina B/genética , Receptor de Colecistoquinina B/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Neoplasias Gástricas/patología
8.
Carcinogenesis ; 35(11): 2619-29, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239641

RESUMEN

Helicobacter pylori CagA directly injected by the bacterium into epithelial cells via a type IV secretion system, leads to cellular changes such as morphology, apoptosis, proliferation and cell motility, and stimulates gastric carcinogenesis. We investigated the effects of cytotoxin-associated gene A (CagA) and gastrokine 1 (GKN1) on cell proliferation, apoptosis, reactive oxygen species (ROS) production, epithelial-mesenchymal transition (EMT) and cell migration in CagA- or GKN1-transfected gastric epithelial cells and mucosal tissues from humans and mice infected with H.pylori. On the molecular level, H.pylori CagA induced increased cell proliferation, ROS production, antiapoptotic activity, cell migration and invasion. Moreover, CagA induced activation of NF-κB and PI3K/Akt signaling pathways and EMT-related proteins. In addition, H.pylori CagA reduced GKN1 gene copy number and expression in gastric cells and mucosal tissues of humans and mice. However, GKN1 overexpression successfully suppressed the carcinogenic effects of CagA through binding to CagA. These results suggest that GKN1 might be a target to inhibit the effects from H.pylori CagA.


Asunto(s)
Transición Epitelial-Mesenquimal , Helicobacter pylori/patogenicidad , Hormonas Peptídicas/genética , Neoplasias Gástricas/genética , Animales , Antígenos Bacterianos/genética , Apoptosis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Células Epiteliales/microbiología , Células Epiteliales/patología , Helicobacter pylori/genética , Humanos , Ratones , Especies Reactivas de Oxígeno , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
9.
J Cell Physiol ; 229(6): 762-71, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24151046

RESUMEN

Gastrokine 1 (GKN1) plays an important role in maintaining gastric mucosa integrity. Here, we investigated whether gastrokine 2 (GKN2) contributes to the homeostasis of gastric epithelial cells by regulating GKN1 activity. We analyzed cell viability, proliferation, and death in AGS cells transfected with GKN1, GKN2, GKN1 plus GKN2 using MTT, BrdU incorporation, and apoptosis assays, respectively. In addition, the expression levels of the cell cycle- and apoptosis-related proteins, miR-185, DNMT1, and EZH2 were determined. We also compared the expression of GKN1, GKN2, and CagA in 50 non-neoplastic gastric mucosae and measured GKN2 expression in 169 gastric cancers by immunohistochemistry. GKN2 inhibited anti-proliferative and pro-apoptotic activities, miR-185 induction, and anti-epigenetic modifications of GKN1. There was a positive correlation between GKN1 and GKN2 expression (P = 0.0074), and the expression of GKN1, but not GKN2, was significantly lower in Helicobacter pylori CagA-positive gastric mucosa (P = 0.0013). Interestingly, ectopic GKN1 expression in AGS cells increased GKN2 mRNA and protein expression in a time-dependent manner (P = 0.01). Loss of GKN2 expression was detected in 126 (74.6%) of 169 gastric cancers by immunohistochemical staining and was closely associated with GKN1 expression and differentiation of gastric cancer cells (P = 0.0002 and P = 0.0114, respectively). Overall, our data demonstrate that in the presence of GKN2, GKN1 loses its ability to decrease cell proliferation, induce apoptosis, and inhibit epigenetic alterations in gastric cancer cells. Thus, we conclude that GKN2 may contribute to the homeostasis of gastric epithelial cells by inhibiting GKN1 activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Mucosa Gástrica/fisiología , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Hormonas Peptídicas/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Apoptosis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular , Helicobacter pylori/metabolismo , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Hormonas Peptídicas/antagonistas & inhibidores , Hormonas Peptídicas/genética
10.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37786680

RESUMEN

Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights: Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.

11.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961688

RESUMEN

No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights on how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout (n = 4) and a triple mutant mouse models (n = 4) of high-grade serous ovarian cancer (HGSC). Lipids belonging to a total of 15 different classes were annotated and their abundance changes compared to those in healthy mouse reproductive tissue (n = 4), mapping onto major lipid pathways involved in OC progression. From intermediate-stage OC to advanced HGSC, we provide a direct visualization of lipid distributions and their biological links to inflammatory response, cellular stress, cell proliferation, and other processes. We also show the ability to distinguish tumors at different stages from healthy tissues via a number of highly specific lipid biomarkers, providing targets for future panels that could be useful in diagnosis.

12.
Front Chem ; 11: 1332816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260043

RESUMEN

No effective screening tools for ovarian cancer (OC) exist, making it one of the deadliest cancers among women. Considering that little is known about the detailed progression and metastasis mechanism of OC at a molecular level, it is crucial to gain more insights into how metabolic and signaling alterations accompany its development. Herein, we present a comprehensive study using ultra-high-resolution Fourier transform ion cyclotron resonance matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to investigate the spatial distribution and alterations of lipids in ovarian tissues collected from double knockout (n = 4) and triple mutant mouse models (n = 4) of high-grade serous ovarian cancer (HGSOC). Lipids belonging to a total of 15 different classes were annotated and their abundance changes were compared to those in healthy mouse reproductive tissue (n = 4), mapping onto major lipid pathways involved in OC progression. From intermediate-stage OC to advanced HGSC, we provide direct visualization of lipid distributions and their biological links to inflammatory response, cellular stress, cell proliferation, and other processes. We also show the ability to distinguish tumors at different stages from healthy tissues via a number of highly specific lipid biomarkers, providing targets for future panels that could be useful in diagnosis.

13.
Neurooncol Adv ; 5(1): vdad102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706203

RESUMEN

Background: Deletions or loss-of-function mutations in phosphatase and tensin homolog (PTEN) are common in glioblastoma (GBM) and have been associated with defective DNA damage repair. Here we investigated whether PTEN deficiency presents a vulnerability to a simultaneous induction of DNA damage and suppression of repair mechanisms by combining topoisomerase I (TOP1) and PARP inhibitors. Methods: Patient-derived GBM cells and isogenic PTEN-null and PTEN-WT glioma cells were treated with LMP400 (Indotecan), a novel non-camptothecin TOP1 inhibitor alone and in combination with a PARP inhibitor, Olaparib or Niraparib. RNAseq analysis was performed to identify treatment-induced dysregulated pathways. Results: We found that GBM cells lacking PTEN expression are highly sensitive to LMP400; however, rescue of the PTEN expression reduces sensitivity to the treatment. Combining LMP400 with Niraparib leads to synergistic cytotoxicity by inducing G2/M arrest, DNA damage, suppression of homologous recombination-related proteins, and activation of caspase 3/7 activity significantly more in PTEN-null cells compared to PTEN-WT cells. LMP400 and Niraparib are not affected by ABCB1 and ABCG2, the major ATP-Binding Cassette (ABC) drug efflux transporters expressed at the blood-brain barrier (BBB), thus suggesting BBB penetration which is a prerequisite for potential brain tumor treatment. Animal studies confirmed both an anti-glioma effect and sufficient BBB penetration to prolong survival of mice treated with the drug combination. Conclusions: Our findings provide a proof of concept for the combined treatment with LMP400 and Niraparib in a subset of GBM patients with PTEN deficiency.

14.
Metabolites ; 12(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736465

RESUMEN

The lack of effective screening strategies for high-grade serous carcinoma (HGSC), a subtype of ovarian cancer (OC) responsible for 70-80% of OC related deaths, emphasizes the need for new diagnostic markers and a better understanding of disease pathogenesis. Capillary electrophoresis (CE) coupled with high-resolution mass spectrometry (HRMS) offers high selectivity and sensitivity for ionic compounds, thereby enhancing biomarker discovery. Recent advances in CE-MS include small, chip-based CE systems coupled with nanoelectrospray ionization (nanoESI) to provide rapid, high-resolution analysis of biological specimens. Here, we describe the development of a targeted microchip (µ) CE-HRMS method, with an acquisition time of only 3 min and sample injection volume of 4nL, to analyze 40 target metabolites in serum samples from a triple-mutant (TKO) mouse model of HGSC. Extracted ion electropherograms showed sharp, baseline resolved peak shapes, even for structural isomers such as leucine and isoleucine. All calibration curves of the analytes maintained good linearity with an average R2 of 0.994, while detection limits were in the nM range. Thirty metabolites were detected in mouse serum with recoveries ranging from 78 to 120%, indicating minimal ionization suppression and good accuracy. We applied the µCE-HRMS method to biweekly-collected serum samples from TKO and TKO control mice. A time-resolved analysis revealed characteristic temporal trends for amino acids, nucleosides, and amino acid derivatives. These metabolic alterations are indicative of altered nucleotide biosynthesis and amino acid metabolism in HGSC development and progression. A comparison of the µCE-HRMS dataset with non-targeted ultra-high performance liquid chromatography (UHPLC)-MS results showed identical temporal trends for the five metabolites detected with both platforms, indicating the µCE-HRMS method performed satisfactorily in terms of capturing metabolic reprogramming due to HGSC progression while reducing the total data collection time three-fold.

15.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565391

RESUMEN

The dismally low survival rate of ovarian cancer patients diagnosed with high-grade serous carcinoma (HGSC) emphasizes the lack of effective screening strategies. One major obstacle is the limited knowledge of the underlying mechanisms of HGSC pathogenesis at very early stages. Here, we present the first 10-month time-resolved serum metabolic profile of a triple mutant (TKO) HGSC mouse model, along with the spatial lipidome profile of its entire reproductive system. A high-coverage liquid chromatography mass spectrometry-based metabolomics approach was applied to longitudinally collected serum samples from both TKO (n = 15) and TKO control mice (n = 15), tracking metabolome and lipidome changes from premalignant stages to tumor initiation, early stages, and advanced stages until mouse death. Time-resolved analysis showed specific temporal trends for 17 lipid classes, amino acids, and TCA cycle metabolites, associated with HGSC progression. Spatial lipid distributions within the reproductive system were also mapped via ultrahigh-resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and compared with serum lipid profiles for various lipid classes. Altogether, our results show that the remodeling of lipid and fatty acid metabolism, amino acid biosynthesis, TCA cycle and ovarian steroidogenesis are critical components of HGSC onset and development. These metabolic alterations are accompanied by changes in energy metabolism, mitochondrial and peroxisomal function, redox homeostasis, and inflammatory response, collectively supporting tumorigenesis.

16.
Front Oncol ; 12: 954879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982947

RESUMEN

Most tumors, including brain tumors, are sporadic. However, a small subset of CNS tumors are associated with hereditary cancer conditions like Lynch Syndrome (LS). Here, we present a case of an oligodendroglioma, IDH-mutant and 1p/19q-codeleted, and LS with a germline pathogenic PMS2 mutation. To our knowledge, this has only been reported in a few cases in the literature. While the family history is less typical of LS, previous studies have indicated the absence of a significant family history in patient cohorts with PMS2 mutations due to its low penetrance. Notably, only a handful of studies have worked on characterizing PMS2 mutations in LS, and even fewer have looked at these mutations in the context of brain tumor development. This report aims to add to the limited literature on germline PMS2 mutations and oligodendrogliomas. It highlights the importance of genetic testing in neuro-oncology.

17.
Trends Cancer ; 7(12): 1054-1058, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34580037

RESUMEN

Tumor mutational burden (TMB) is an emerging biomarker for the prediction of immunotherapy success in solid tumors. Gliomas, however, do not demonstrate a correlation between TMB and immunotherapy efficacy. Here, we discuss the potential factors influencing this discordance, focusing on the impact of neoantigen immunogenicity, clonality, expression, and presentation.


Asunto(s)
Glioma , Inmunoterapia , Biomarcadores de Tumor , Glioma/genética , Glioma/terapia , Humanos
18.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207158

RESUMEN

Glioblastoma is the most common and aggressive primary malignant brain tumor, and more than two-thirds of patients with glioblastoma die within two years of diagnosis. The challenges of treating this disease mainly include genetic and microenvironmental features that often render the tumor resistant to treatments. Despite extensive research efforts, only a small number of drugs tested in clinical trials have become therapies for patients. Targeting cyclin-dependent kinase 9 (CDK9) is an emerging therapeutic approach that has the potential to overcome the challenges in glioblastoma management. Here, we discuss how CDK9 inhibition can impact transcription, metabolism, DNA damage repair, epigenetics, and the immune response to facilitate an anti-tumor response. Moreover, we discuss small-molecule inhibitors of CDK9 in clinical trials and future perspectives on the use of CDK9 inhibitors in treating patients with glioblastoma.

19.
Cancers (Basel) ; 13(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885201

RESUMEN

BACKGROUND: A consistent correlation between tumor mutation burden (TMB) and tumor immune microenvironment has not been observed in gliomas as in other cancers. METHODS: Driver germline and somatic mutations, TMB, neoantigen, and immune cell signatures were analyzed using whole exome sequencing (WES) and transcriptome sequencing of tumor and WES of matched germline DNA in a cohort of 66 glioma samples (44 IDH-mutant and 22 IDH-wildtype). RESULTS: Fourteen samples revealed a hypermutator phenotype (HMP). Eight pathogenic (P) or likely pathogenic (LP) germline variants were detected in 9 (19%) patients. Six of these 8 genes were DNA damage repair genes. P/LP germline variants were found in 22% of IDH-mutant gliomas and 12.5% of IDH-wildtype gliomas (p = 0.7). TMB was correlated with expressed neoantigen but showed an inverse correlation with immune score (R = -0.46, p = 0.03) in IDH-wildtype tumors and no correlation in IDH-mutant tumors. The Antigen Processing and Presentation (APP) score correlated with immune score and was surprisingly higher in NHMP versus HMP samples in IDH-wildtype gliomas, but higher in HMP versus NHMP in IDH-mutant gliomas. CONCLUSION: TMB was inversely correlated with immune score in IDH-wildtype gliomas and showed no correlation in IDH-mutant tumors. APP was correlated with immune score and may be further investigated as a biomarker for response to immunotherapy in gliomas. Studies of germline variants in a larger glioma cohort are warranted.

20.
World J Gastroenterol ; 25(3): 330-345, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30686901

RESUMEN

BACKGROUND: Atrophic gastritis is characterized by loss of appropriate glands and reduction in gastric secretory function due to chronic inflammatory processes in gastric mucosa. Moreover, atrophic gastritis is considered as a precancerous condition of gastric cancer. However, little is known about the molecular mechanism underlying gastric mucosal atrophy and its contribution to gastric carcinogenesis. Thus, we hypothesized that transcription factor NKX6.3 might be involved in maintaining gastric epithelial homeostasis by regulating amyloid ß (Aß) production. AIM: To determine whether NKX6.3 might protect against gastric mucosal atrophy by regulating Aß production. METHODS: We identified NKX6.3 depletion induced cell death by cell count and Western blot assay. Production and mechanism of Aß oligomer were analyzed by enzyme-linked immunosorbent assay, Western blot, immunoprecipitation, real-time quantitative polymerase chain reaction and immunofluorescence analysis. We further validated the correlation between expression of NKX6.3, Helicobacter pylori CagA, Aß oligomer, apolipoprotein E (ApoE), and ß-secretase 1 (Bace1) in 55 gastric mucosae. RESULTS: NKX6.3 depletion increased both adherent and floating cell populations in HFE-145 cells. Expression levels of cleaved caspase-3, -9, and poly ADP ribose polymerase were elevated in floating HFE-145shNKX6.3 cells. NKX6.3 depletion produced Aß peptide oligomers, and increased expression of ApoE, amyloid precursor protein, Aß, Bace1, low-density lipoprotein receptor, nicastrin, high mobility group box1, and receptor for advanced glycosylation end product proteins. In immunoprecipitation assay, γ-secretase complex was stably formed only in HFE-145shNKX6.3 cells. In gastric mucosae with atrophy, expression of Aß peptide oligomer, ApoE, and Bace1 was detected and inversely correlated with NKX6.3 expression. Treatment with recombinant Aß 1-42 produced Aß oligomeric forms and decreased cell viability in HFE-145shNKX6.3 cells. Additionally, NKX6.3 depletion increased expression of inflammatory cytokines and cyclooxygenase-2. CONCLUSION: NKX6.3 inhibits gastric mucosal atrophy by regulating Aß accumulation and inflammatory reaction in gastric epithelial cells.


Asunto(s)
Péptidos beta-Amiloides/genética , Gastritis Atrófica/patología , Infecciones por Helicobacter/patología , Proteínas de Homeodominio/metabolismo , Lesiones Precancerosas/patología , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo , Péptidos beta-Amiloides/metabolismo , Antígenos Bacterianos/análisis , Proteínas Bacterianas/análisis , Carcinogénesis/patología , Línea Celular , Regulación hacia Abajo , Células Epiteliales , Gastrectomía , Mucosa Gástrica/citología , Mucosa Gástrica/patología , Mucosa Gástrica/cirugía , Gastritis Atrófica/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Proteínas de Homeodominio/genética , Humanos , Lesiones Precancerosas/microbiología , ARN Interferente Pequeño/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/cirugía , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA