Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(11-12): 849-864, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907650

RESUMEN

Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.


Asunto(s)
Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Mutación , Nitrilos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas , Interferencia de ARN , Receptores de Citocinas/genética , Transcriptoma , Triazoles/farmacología
2.
Phys Rev Lett ; 132(5): 053602, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364136

RESUMEN

The interaction of a resonant light field with a quantum two-level system is of key interest both for fundamental quantum optics and quantum technological applications employing resonant excitation. While emission under resonant continuous-wave excitation has been well studied, the more complex emission spectrum of dynamically dressed states-a quantum two-level system driven by resonant pulsed excitation-has so far been investigated in detail only theoretically. Here, we present the first experimental observation of the complete resonance fluorescence emission spectrum of a single quantum two-level system, in the form of an excitonic transition in a semiconductor quantum dot, driven by finite Gaussian pulses. We observe multiple emerging sidebands as predicted by theory, with an increase of their number and spectral detuning with excitation pulse intensity and a dependence of their spectral shape and intensity on the pulse length. Detuning-dependent measurements provide additional insights into the emission features. The experimental results are in excellent agreement with theoretical calculations of the emission spectra, corroborating our findings.

3.
Faraday Discuss ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805255

RESUMEN

The specific geometry of a molecule can have a pronounced influence on its chemical reactivity. However, experimental data on reactions of individual molecular isomers are still sparse because they are often difficult to separate and frequently interconvert into one another under ambient conditions. Here, we employ a novel crossed-beam experiment featuring an electrostatically controlled molecular beam combined with a source for radicals and metastables to spatially separate the cis and trans stereoisomers as well as individual rotational states of 1,2-dibromoethene and study their specific reactivities in the chemi-ionisation reaction with excited neon atoms. The experiments reveal pronounced isomeric and rotational specificities in the rates and product branching ratios of the reaction. The present study underlines the importance and combined role of molecular geometry and of rotational motion in the dynamics of chemi-ionisation reactions.

4.
J Am Chem Soc ; 145(47): 25824-25833, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972034

RESUMEN

The nature of the electron-binding forces in the dipole-bound states (DBS) of anions is interrogated through experimental and theoretical means by investigating the autodetachment dynamics from DBS Feshbach resonances of ortho-, meta-, and para-bromophenoxide (BrPhO-). Though the charge-dipole electrostatic potential has been widely regarded to be mainly responsible for the electron binding in DBS, the effect of nonclassical electron correlation has been conceived to be quite significant in terms of its static and/or dynamic contributions toward the binding of the excess electron to the neutral core. State-specific real-time autodetachment dynamics observed by picosecond time-resolved photoelectron velocity-map imaging spectroscopy reveal that the autodetachment processes from the DBS Feshbach resonances of BrPhO- anions cannot indeed be rationalized by the conventional charge-dipole potential. Specifically, the autodetachment lifetime is drastically lengthened depending on differently positioned Br-substitution, and this rate change cannot be explained within the framework of Fermi's golden rule based on the charge-dipole assumption. High-level ab initio quantum chemical calculations with EOM-EA-CCSD, which intrinsically takes into account electron correlations, generate more reasonable predictions on the binding energies than density functional theory (DFT) calculations, and semiclassical quantum dynamics simulations based on the EOM-EA-CCSD data excellently predict the trend in the autodetachment rates. These findings illustrate that static and dynamic properties of the excess electron in the DBS are strongly influenced by correlation interactions among electrons in the nonvalence orbital of the dipole-bound electron and highly polarizable valence orbitals of the bromine atom, which, in turn, dictate the interesting chemical fate of exotic anion species.

5.
Acc Chem Res ; 55(20): 3032-3042, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36206486

RESUMEN

Nonvalence bound states (NBS) are anionic states where the excess electron is extremely loosely bound to the neutral core through long-range potentials. In contrast to the valence orbitals of which the electron occupancy determines the molecular structure, as well as the chemical reactivity, the nonvalence orbital is quite diffuse and located far from the neutral core. The NBS can be classified into the dipole-bound state (DBS), quadruple-bound state (QBS), or correlation-bound state (CBS) according to the nature of the electron-neutral interaction, although their interaction potentials may cooperatively contribute. The NBS is ubiquitous in nature and has the strong implications in atmospheric, interstellar, or biological chemistry. Accordingly, NBS has long been conceived to play the role of the doorway into the formation of a stable anion or dissociative electron attachment (DEA). Despite intensive and extensive studies, however, the quantum-mechanical nature of NBS is still far from being thorough understanding. Herein, we describe a new aspect of state-specific NBS-mediated chemical dynamics, which has been revealed through a series of recent studies by our group. We have employed picosecond time-resolved pump-probe spectroscopy combined with cryogenically cooled ion trap and velocity-map imaging techniques to study closed-shell anions generated by electrospray ionization. DBS vibrational Feshbach resonances are prepared by the optical excitation of phenoxide, for instance, and their individual lifetimes have been precisely measured in a state-specific manner to reveal the strong mode-dependency of the autodetachment rate. Fermi's golden rule turns out to be extremely useful for a rational explanation of the experiment, although the more sophisticated theoretical model is desirable for the more quantitative analysis. For the DBS of para-chlorophenoxide or para-bromophenoxide where the polarizability of neutral core is substantial, the Fermi's golden rule based on the charge-dipole potential needs to be significantly modified to include the correlation effects to explain the exceptionally slow autodetachment rates. For the QBS of 4-cyanophenoxide, the mode-specific behavior of the quadrupole ellipsoid tensor explains the strong mode-dependent autodetachment rate. Meanwhile, the nonadiabatic transition of the excess electron into the valence orbital can result in stable anion formation or immediate chemical bond rupture. In the DBS of ortho-, meta-, or para-iodophenoxide, the transformation of the loosely bound excess electron into the πσ* antibonding orbital occurs to give I- as a final fragment. The fragmentation mediated by DBS occurs competitively with the concomitant autodetachment, paving a new way of the reaction control by tuning the quantum-mechanical nature of the DBS Feshbach resonance. This experimental observation provides the foremost evidence for the dynamic role of the DBS as a doorway into anion chemistry, such as DEA. The ponderomotive force on the electron in the nonvalence orbital has been demonstrated for the first time in a strong optical field, giving great promise for the manipulation of polyatomic molecules in terms of the spatial location, as well as the AC-Stark control of the chemical reaction.


Asunto(s)
Electrones , Aniones/química , Química Física , Estructura Molecular , Análisis Espectral
6.
J Chem Phys ; 158(10): 104301, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922134

RESUMEN

Mode-dependent H atom tunneling dynamics of the O-H bond predissociation of the S1 phenol has been theoretically analyzed. As the tunneling is governed by the complicated multi-dimensional potential energy surfaces that are dynamically shaped by the upper-lying S1(ππ*)/S2(πσ*) conical intersection, the mode-specific tunneling dynamics of phenol (S1) has been quite formidable to be understood. Herein, we have examined the topography of the potential energy surface along the particular S1 vibrational mode of interest at the nuclear configurations of the S1 minimum and S1/S2 conical intersection. The effective adiabatic tunneling barrier experienced by the reactive flux at the particular S1 vibrational mode excitation is then uniquely determined by the topographic shape of the potential energy surface extended along the conical intersection seam coordinate associated with the particular vibrational mode. The resultant multi-dimensional coupling of the specific vibrational mode to the tunneling coordinate is then reflected in the mode-dependent tunneling rate as well as nonadiabatic transition probability. Remarkably, the mode-specific experimental result of the S1 phenol tunneling reaction [K. C. Woo and S. K. Kim, J. Phys. Chem. A 123, 1529-1537 (2019)] (in terms of the qualitative and relative mode-dependent dynamic behavior) could be well rationalized by semi-classical calculations based on the mode-specific topography of the effective tunneling barrier, providing the clear conceptual insight that the skewed potential energy surfaces along the conical intersection seam (strongly or weakly coupled to the tunneling reaction coordinate) may dictate the tunneling dynamics in the proximity of the conical intersection.

7.
J Chem Phys ; 159(18)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962447

RESUMEN

The H atom tunneling dissociation dynamics of the S1 state of meta- or para-cresol has been investigated by using the picosecond time-resolved pump-probe spectroscopy in a state-specific manner. The S1 state lifetime (mainly due to the H atom tunneling reaction) is found to be mode-dependent whereas it quickly converges and remains constant as the rapid intramolecular vibrational energy redistribution (IVR) starts to participate in the S1 state relaxation with the increase of the S1 internal energy (Eint). The IVR rate and its change with increasing Eint have been reflected in the parent ion transients taken by tuning the total energy (hνpump + hνprobe) just above the adiabatic ionization threshold (so that the dissipation of the initial mode-character could be monitored as a function of the reaction time), indicating that the mode randomization rate into the S1 isoenergetic manifolds exceeds the tunneling rate quite early in terms of Eint for m-cresol (≤∼1200 cm-1) or p-cresol (≤∼800 cm-1) compared to the case of phenol (≤∼1800 cm-1). Though the H atom tunneling dynamics of phenol (S1) seems to be little influenced by the methyl substitution on the either m- or p-position, the IVR rate has been found to be strongly accelerated due to the sharply-increasing (S1) density of states with increasing Eint due to the pivotal role of the low-frequency CH3 torsional mode.

8.
J Am Chem Soc ; 144(35): 16077-16085, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35973092

RESUMEN

Anion chemical dynamics of autodetachment and fragmentation mediated by the dipole-bound state (DBS) have been thoroughly investigated in a state-specific way by employing the picosecond time-resolved or the nanosecond frequency-resolved spectroscopy combined with the cryogenically cooled ion trap and velocity-map imaging techniques. For the ortho-, meta-, or para-iodophenoxide anion (o-, m-, or p-IPhO-), the C-I bond rupture occurs via the nonadiabatic transition from the DBS to the nearby valence-bound states (VBS) of the anion where the vibronic coupling into the S1 (πσ*) state (repulsive along the C-I bond extension coordinate) should be largely responsible. Dynamic details are governed by the isomer-specific nature of the potential energy surfaces in the vicinity of the DBS-VBS curve crossings, as manifested in the huge different chemical reactivity of o-, m-, or p-IPhO-. It is confirmed here that the C-I bond dissociation is mediated by DBS resonances, providing the foremost evidence that the metastable DBS plays the critical role as the doorway into the anion chemistry especially of the dissociative electron attachment (DEA). The fragmentation channel is dominant when it is mediated by the DBS resonances located below the electron-affinity (EA) threshold, whereas it is kinetically adjusted by the competitive autodetachment when the DBS resonances above EA convey the electron to the valence orbitals. The product yield of the C-I bond cleavage is strongly mode-dependent as the rate of the concomitant autodetachment is much influenced by the characteristics of the individual vibrational modes, paving a new way of the reaction control of the anion chemistry.

9.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200376, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35341307

RESUMEN

Non-adiabatic couplings between Born-Oppenheimer (BO)-derived potential energy surfaces are now recognized as pivotal in describing the non-radiative decay of electronically excited molecules following photon absorption. This opinion piece illustrates how non-BO effects provide photostability to many biomolecules when exposed to ultraviolet radiation, yet in many other cases are key to facilitating 'reactive' outcomes like isomerization and bond fission. The examples are presented in order of decreasing molecular complexity, spanning studies of organic sunscreen molecules in solution, through two families of heteroatom containing aromatic molecules and culminating with studies of isolated gas phase H2O molecules that afford some of the most detailed insights yet available into the cascade of non-adiabatic couplings that enable the evolution from photoexcited molecule to eventual products. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.


Asunto(s)
Rayos Ultravioleta , Fotoquímica
10.
J Phys Chem A ; 126(51): 9594-9604, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36534791

RESUMEN

The S-H bond tunneling predissociation dynamics of thiophenol and its ortho-substituted derivatives (2-fluorothiophenol, 2-methoxythiophenol, and 2-chlorothiphenol) in S1 (ππ*) where the H atom tunneling is mediated by the nearby S2 (πσ*) state (which is repulsive along the S-H bond extension coordinate) have been investigated in a state-specific way using the picosecond time-resolved pump-probe spectroscopy for the jet-cooled molecules. The effects of the specific vibrational mode excitations and the SH/SD substitutions on the S-H(D) bond rupture tunneling dynamics have been interrogated, giving deep insights into the multidimensional aspects of the S1/S2 conical intersection, which also shapes the underlying adiabatic tunneling potential energy surfaces (PESs). The semiclassical tunneling rate calculations based on the Wentzel-Kramers-Brillouin (WKB) approximation or Zhu-Nakamura (ZN) theory have been carried out based on the ab initio PESs calculated in the (one, two, or three) reduced dimensions to be compared with the experiment. Though the quantitative experimental results could not be reproduced satisfactorily by the present calculations, the qualitative trends among different molecules in terms of the behavior of the tunneling rate versus the (adiabatic) barrier height or the number of PES dimensions could be rationalized. Most interestingly, the H/D kinetic isotope effect observed in the tunneling rate could be much better explained by the ZN theory compared to the WKB approximation, indicating that the nonadiabatic coupling matrix elements should be invoked for understanding the tunneling dynamics taking place in the proximity of the conical intersection.

11.
J Phys Chem A ; 125(30): 6629-6635, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34310149

RESUMEN

Molecular structures in the electronically excited (S1) and cationic (D0) states of 2-fluorothioanisole (2-FTA) have been precisely refined from the real-time dynamics of the femtosecond (fs) wavepacket prepared by the coherent excitation of the Franck-Condon active out-of-plane torsional modes in the S1 ← S0 transition at 285 nm. The simulation to reproduce the experiment in terms of the beating frequencies gives the nonplanar geometry of 2-FTA in S1, where the out-of-plane dihedral angle (φ) of the S-CH3 moiety is 51° with respect to the molecular plane. The behavior of the fs wavepacket in terms of the amplitudes and phases with the change of the probe (ionization) wavelength (λprobe = 300-330 nm) provides the otherwise veiled structure of the cationic D0 state. While the 2-FTA cation adopts the planar geometry (φ = 0°) at the global minimum, it is found to have a vertical minimum at φ ≈ 135° from the perspective of the D0 ← S1 vertical transition. Ab initio calculations support the experiment quite well although the simulation using the model potentials could improve the match with the experiment, giving the new interpretation for the previously disputed photoelectron spectroscopic results.

12.
J Phys Chem A ; 125(35): 7655-7661, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34432455

RESUMEN

The S1-state decaying rates of the three different benzenediols, catechol, resorcinol, and hydroquinone, and their 1:1 water clusters have been state-specifically measured using the picosecond time-resolved parent ion transients obtained by the pump (excitation) and probe (ionization) scheme. The S1 lifetime of catechol is found to be short, giving τ ∼ 5.9 ps at the zero-point level. This is ascribed to the H-atom detachment from the free OH moiety of the molecule. Consistent with a previous report (J. Phys. Chem. Lett. 2013, 4, 3819-3823), the S1 lifetime gets lengthened with low-frequency vibrational mode excitations, giving τ ∼ 9.0 ps for the 116 cm-1 band. The S1 lifetimes at the additional vibronic modes of catechol are newly measured, showing the nonnegligible mode-dependent fluctuations of the tunneling rate. When catechol is complexed with water, the S1 lifetime is enormously increased to τ ∼ 1.80 ns at the zero-point level while it shows an unusual dip at the intermolecular stretching mode excitation (τ ∼ 1.03 ns at 146 cm-1). Otherwise, it is shortened monotonically with increasing the internal energy, giving τ ∼ 0.67 ns for the 856 cm-1 band. Two different asymmetric or symmetric conformers of resorcinol give the respective S1 lifetimes of 4.5 or 6.3 ns at their zero-point levels according to the estimation from our transients taken within the temporal window of 0-2.7 ns. When resorcinol is 1:1 complexed with H2O, the S1 decaying rate is slightly accelerated for both conformers. The S1 lifetimes of trans and cis forms of hydroquinone are measured to be more or less same, giving τ ∼ 2.8 ns at the zero-point level. When H2O is complexed with hydroquinone, the S1 decaying process is facilitated for both conformers, slightly more efficiently for the cis conformer.

13.
Qual Life Res ; 30(4): 1017-1024, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33216260

RESUMEN

PURPOSE: This study aimed to assess the impact of overactive bladder on health-related quality of life (HRQoL) in a community-based sample of Korean population. METHODS: The data of adults aged 19 and over that who participated in the 2012 Korean Community Health Survey were analyzed. Overactive bladder severity was classified as normal, mild, moderate, or severe using the Overactive Bladder Symptom scores, and HRQoL was evaluated using EQ-5D-3L. Relations between HRQoL and the severities and symptoms of OAB were investigated. Sampling weighted adjusted multiple regression analysis was performed to determine the effect of OAB symptom severity on HRQoL. RESULTS: Of the 226,867 study subjects, 12,303 (5.4%) had OAB, and 552 (0.2%) had an OABSS of ≥ 12, indicating severe OAB. The problem -reporting rate significantly increased in all EQ-5D-3L dimensions as OAB severity increased. After adjusting for other variables, OAB severity had a significant effect on EQ-5D-3L index. Urge incontinence had greatest impact on quality of life. CONCLUSIONS: As the severity of OAB increased from mild to severe, quality of life decreased significantly. OAB was found to negatively affect HRQoL.


Asunto(s)
Encuestas Epidemiológicas/normas , Calidad de Vida/psicología , Encuestas y Cuestionarios/normas , Vejiga Urinaria Hiperactiva/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , República de Corea , Adulto Joven
14.
J Chem Phys ; 155(16): 164304, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34717354

RESUMEN

Photofragmentation dynamics of cis and trans isomers of 1,2-dibromoethylene (1,2-DBE) have been investigated by multiphoton excitation using a picosecond (ps) laser pulse. It has been found that the Br2 + product ion preferentially originates from the cis isomer rather than from trans. The Boltzmann-type isotropic low kinetic energy components of the Br+ and Br2 + product state distributions seem to be most likely from the unimolecular reactions of the vibrationally hot cationic ground state generated by the three-photon absorption at the photon energy below ∼38 000 cm-1. The highly anisotropic kinetic energy components of Br+ and Br2 + start to appear at the photon energy above ∼38 000 cm-1, where the Dn (n ≥ 1) - D0 transition is facilitated within the same ps laser pulse as the parent molecule is efficiently ionized by the two-photon absorption. The transition dipole moment of the D4 - D0 transition of the strongest oscillator strength has been theoretically predicted to be parallel to the C-Br bond or C=C bond axis for the trans or cis isomer, respectively. The fast anisotropic with the (ß âˆ¼ +2) component in the Br+ product distribution is thus likely from the trans isomer, whereas that of Br2 + (ß âˆ¼ -0.5) should be the consequence of the photodissociation of the cis isomer. The isomer-specific reactivity found here in the picosecond multiphoton excitation of 1,2-DBE provides a nice platform for the better understanding of the structure-reactivity relationship under the harsh condition of the strong or ultrashort optical field.

15.
Phys Rev Lett ; 125(9): 093001, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32915603

RESUMEN

Feshbach resonances corresponding to metastable vibrational states of the dipole-bound state (DBS) have been interrogated in real time for the first time. The state-specific autodetachment rates of the DBS of the phenoxide anion in the cryogenically cooled ion trap have been directly measured, giving τ∼33.5 ps for the lifetime of the most prominent 11^{'1} mode (519 cm^{-1}). Overall, the lifetime of the individual DBS state is strongly mode dependent to give τ∼5 ps for the 18^{'1} mode (632 cm^{-1}) and τ∼12 ps for the 11^{'2} mode (1036 cm^{-1}). The qualitative trend of the experiment could be successfully explained by the Fermi's golden rule. Autodetachment of the 11^{'1}18^{'1} combination mode is found to be much accelerated (τ≤1.4 ps) than expected, and its bifurcation dynamics into either the 11^{1}18^{0} or 11^{0}18^{1} state of the neutral core radical, according to the propensity rule of Δv=-1, could be distinctly differentiated through the photoelectron images to provide the unprecedented deep insights into the interaction between electronic and nuclear dynamics of the DBS, challenging the most sophisticated theoretical calculations.

16.
Phys Chem Chem Phys ; 22(35): 19713-19717, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32840271

RESUMEN

The S-H bond dissociation dynamics of CH3SH have been investigated for the S1-S0 transition mediated by either the S-H stretching (2608 cm-1) or CH3 symmetric stretching (2951 cm-1) mode excitation in the S0 state. The S-H and C-S bond extensions are strongly coupled in the S1 state through the S1/S2 same-symmetry conical intersection, giving the C-S stretching mode excitation of the CH3S˙ fragment during the prompt S-H bond rupture on S1. In the IR + UV transition mediated by the S-H stretching mode, the vertical transition seems to access the Franck-Condon region where the S-H bond is shortened while the coupling to the C-S bond stretching becomes stronger compared to the case of one-photon UV transition, indicating that the intramolecular vibrational redistribution (IVR) is little activated in S0. When the IR + UV excitation is mediated by the CH3 symmetric stretching mode, on the other hand, the Franck-Condon region in S1 encompasses the enlarged molecular structures with respect to both S-H and C-S bond extensions, presumably due to the rapid IVR in S0 prior to the vertical transition. This leads to the inverted vibrational state population of the C-S bond stretching mode of the CH3S˙ fragment. This work demonstrates that the reaction dynamics upon the IR + UV excitation of CH3SH is highly mode dependent and the energy disposal dynamics could be controlled by the manipulation of the Franck-Condon region through the particular vibrational-state mediation in the ground state, shedding new light on the structure-dynamics relationship.

17.
Phys Chem Chem Phys ; 22(44): 25811-25818, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33150347

RESUMEN

Ultrafast intersystem crossing (ISC) in transition metal complexes leads to a long-lived active state with a high yield, which leads to efficient light energy conversion. The detailed mechanism of ISC may lead to a rational molecular design of superior transition metal complexes. Coherent nuclear wave packets observed in femtosecond time-resolved spectroscopies provide important information on the excited-state dynamics. In particular, analyzing the nuclear wave packets in both the reactant and the product may unveil the molecular dynamics of an ultrafast reaction. In this study, experimental evidence proving the reaction coordinates of the ultrafast ISC of ruthenium(ii) complexes is presented using coherent vibrational spectroscopy with a quantum chemical simulation of coherent vibrational motion. We observed vibrational modes strongly coupled to the ISC, whose vibrational coherences undergo remarkable attenuation after the ISC. The coupled modes contain metal-ligand stretching or symmetry breaking components, and the faster ISC rates of lower-symmetry ruthenium(ii) complexes support the significance of the latter.

18.
J Phys Chem A ; 124(23): 4666-4671, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32401512

RESUMEN

Trans and cis conformers of 3-methylthioanisole have been spectroscopically investigated to reveal the conformer specific structural changes upon the S1(ππ*)-S0 excitation. The conformational cooling during the supersonic expansion is found to be quite efficient in the Ar carrier gas giving the trans conformational isomer exclusively in the molecular beam, whereas both trans and cis conformers are populated in the jet when the sample is carried in Ne. Using the Stark deflector, trans and cis conformers are unambiguously identified, showing the distinct Stark deflection profiles according to their sufficiently different dipole moments of 1.013 or 1.670 D, respectively. For the trans conformer, the methyl moiety on the meta-position adopting the eclipsed geometry in S0 transforms into the staggered geometry in S1 to activate a series of the CH3 torsional mode. A Hamiltonian with the one-dimensional sinusoidal torsional potential is solved using the free-rotor basis set to explain the experiment, giving the 3-fold torsional barrier of 34 and 304 cm-1 for S0 and S1, respectively. For the cis conformer, on the other hand, the CH3 torsion is little activated in the S1-S0 transition as both S0 and S1 adopt the staggered geometry at the minimum energy points. The doublet of each band of the cis conformer is ascribed to tunneling split due to the very low CH3 torsional barrier of 27 cm-1 in S0. It is found that the cis conformer undergoes a planar to pseudoplanar structural change upon the S1-S0 transition. Theoretical calculation based on the double-well model potential curve could explain the experiment quite well, suggesting that the SCH3 moiety of the cis conformer in S1 becomes out-of-plane with respect to the plane of the phenyl moiety. This implies that excited-state predissociation dynamics of trans and cis conformers of the title molecule might be different.

19.
BMC Public Health ; 20(1): 954, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552690

RESUMEN

BACKGROUND: This study aimed to investigate the relationships between the frequency of impairments in daily activities due to the overuse of the Internet, gaming, or smartphones (IGS) and sociodemographic characteristics, social relationships (including family) & activities, psychosocial characteristics, health status, and health-related quality of life (HRQoL) of Korean adults. METHODS: Secondary data from the 2017 Community Health Survey, a large-scale sample survey conducted yearly in South Korea, were analyzed for 190,066 adults over 19 years of age. Three categories were created for impairment groups due to IGS overuse: No Impairment, Mild Impairment, and Moderate-to-Severe groups. And between-group differences were examined using a one-way ANOVA for health status measured with the EQ-5D-3 L and chi-square tests for all categorical dependent variables, which included sociodemographic characteristics, social relationships & activities, and psychosocial factors. The association between frequencies of daily activity impairments due to IGS overuse and the dependent variables were examined using a multivariate logistic regression analysis and a linear regression model. RESULTS: Approximately 21,345 (11.23%) of the 190,066 participants reported experiencing impairments in daily activities due to IGS overuse at least once in the previous year and the impairments were more severe in males than females. Participants experiencing impairments in daily activities contacted their friends a significantly higher number of times (4 times or more per month) and engaged in leisure activities more frequently (more than once per month) than those without impairments. There was also a significant positive relationship between IGS overuse and stress, depression, suicidal ideation, and suicide attempts. Among participants aged 19-64, impairments in daily activities due to IGS overuse were associated with a lower HRQoL. Conversely, for those aged 65 and over, mild and moderate-to-severe impairments due to IGS overuse were associated with a significantly higher HRQoL. CONCLUSIONS: Increased impairments in daily activities due to IGS overuse may negatively affect mental health. However, among older adults, the frequency of such impairments was positively associated with HRQoL. This finding could be considered to apply interventions with Internet usage or ICT devices for older adults to enhance their quality of life.


Asunto(s)
Actividades Cotidianas/psicología , Estado de Salud , Calidad de Vida/psicología , Juegos de Video/estadística & datos numéricos , Adulto , Anciano , Depresión/complicaciones , Femenino , Encuestas Epidemiológicas , Humanos , Internet , Modelos Lineales , Masculino , Salud Mental , Persona de Mediana Edad , República de Corea , Teléfono Inteligente/estadística & datos numéricos , Ideación Suicida , Encuestas y Cuestionarios , Adulto Joven
20.
Phys Chem Chem Phys ; 21(26): 14387-14393, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30849154

RESUMEN

State-selective deactivation rates of N-methylpyrrole in the S1 state have been measured by using the picosecond pump-probe method. The S1 decay time leading to the N-CH3 bond dissociation is found to be strongly mode-dependent as manifested in both S1 decay and methyl-fragment growth dynamics. Time-resolved velocity-map ion images of the ˙CH3 fragment, as far as the fragment of the Gaussian-shaped high kinetic energy distribution is concerned, suggest that the N-CH3 cleavage reaction might occur through an intermediate. Sudden decrease of the S1 lifetime at ∼700 cm-1 above the S1 origin is accompanied by the fragmentation of the Boltzmann-type low kinetic energy distribution. The appearance rate of this low-kinetic energy fragment turns out to be quite slow to give τ∼ 5 ns compared to the S1 lifetime of ∼174 ps at the +806 cm-1 band, for instance, confirming previous findings that the S1 decay process starts to be overwhelmed by a new fast nonradiative transition in the corresponding excitation energy region. The lifetime at the S1 origin accessed by the two-photon absorption is firstly measured to give τ∼ 8 ns. Using one and two photon absoption processes, a number of S1 vibronic bands are identified to give mode-dependent lifetimes spanning an enormously wide temporal range of 8 ns-5 ps in the quite narrow excitation energy region of 0-1800 cm-1 above the S1 origin. Understanding of the N-methylpyrrole dynamics on multidimensional excited-state potential energy surfaces governing energy dissipating processes will get much benefit from our detailed mode-specific lifetime measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA