Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202229

RESUMEN

Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3-/-) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.


Asunto(s)
Amianto/efectos adversos , Daño del ADN , Expresión Génica , Fibrosis Pulmonar Idiopática/etiología , Mitocondrias/genética , Monocitos/metabolismo , Sirtuina 3/genética , Animales , Biomarcadores , ADN Mitocondrial , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Monocitos/inmunología , Monocitos/patología , Estrés Oxidativo , Sirtuina 3/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1084-L1096, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209025

RESUMEN

Alveolar epithelial cell (AEC) apoptosis, arising from mitochondrial dysfunction and mitophagy defects, is important in mediating idiopathic pulmonary fibrosis (IPF). Our group established a role for the mitochondrial (mt) DNA base excision repair enzyme, 8-oxoguanine-DNA glycosylase 1 (mtOGG1), in preventing oxidant-induced AEC mtDNA damage and apoptosis and showed that OGG1-deficient mice have increased lung fibrosis. Herein, we determined whether mice overexpressing the mtOGG1 transgene (mtOgg1tg) are protected against lung fibrosis and whether AEC mtOGG1 preservation of mtDNA integrity mitigates phosphatase and tensin homolog-induced putative kinase 1 (PINK1) deficiency and apoptosis. Compared with wild type (WT), mtOgg1tg mice have diminished asbestos- and bleomycin-induced pulmonary fibrosis that was accompanied by reduced lung and AEC mtDNA damage and apoptosis. Asbestos and H2O2 promote the MLE-12 cell PINK1 deficiency, as assessed by reductions in the expression of PINK1 mRNA and mitochondrial protein expression. Compared with WT, Pink1-knockout (Pink1-KO) mice are more susceptible to asbestos-induced lung fibrosis and have increased lung and alveolar type II (AT2) cell mtDNA damage and apoptosis. AT2 cells from Pink1-KO mice and PINK1-silenced (siRNA) MLE-12 cells have increased mtDNA damage that is augmented by oxidative stress. Interestingly, mtOGG1 overexpression attenuates oxidant-induced MLE-12 cell mtDNA damage and apoptosis despite PINK1 silencing. mtDNA damage is increased in the lungs of patients with IPF as compared with controls. Collectively, these findings suggest that mtOGG1 maintenance of AEC mtDNA is crucial for preventing PINK1 deficiency that promotes apoptosis and lung fibrosis. Given the key role of AEC apoptosis in pulmonary fibrosis, strategies aimed at preserving AT2 cell mtDNA integrity may be an innovative target.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Asbestosis/genética , ADN Glicosilasas/genética , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Quinasas/genética , Fibrosis Pulmonar/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Amianto/administración & dosificación , Asbestosis/etiología , Asbestosis/metabolismo , Asbestosis/patología , Bleomicina/administración & dosificación , Daño del ADN , ADN Glicosilasas/deficiencia , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Regulación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Cultivo Primario de Células , Proteínas Quinasas/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Titanio/administración & dosificación
3.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764262

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease for which novel approaches are urgently required. We reported increased sphingosine kinase 1 (SPHK1) in IPF lungs and that SPHK1 inhibition using genetic and pharmacologic approaches reduces murine bleomycin-induced pulmonary fibrosis. We determined whether PF543, a specific SPHK1 inhibitor post bleomycin or asbestos challenge mitigates lung fibrosis by reducing mitochondrial (mt) DNA damage and pro-fibrotic monocyte recruitment-both are implicated in the pathobiology of pulmonary fibrosis. Bleomycin (1.5 U/kg), crocidolite asbestos (100 µg/50 µL) or controls was intratracheally instilled in Wild-Type (C57Bl6) mice. PF543 (1 mg/kg) or vehicle was intraperitoneally injected once every two days from day 7-21 following bleomycin and day 14-21 or day 30-60 following asbestos. PF543 reduced bleomycin- and asbestos-induced pulmonary fibrosis at both time points as well as lung expression of profibrotic markers, lung mtDNA damage, and fibrogenic monocyte recruitment. In contrast to human lung fibroblasts, asbestos augmented lung epithelial cell (MLE) mtDNA damage and PF543 was protective. Post-exposure PF543 mitigates pulmonary fibrosis in part by reducing lung epithelial cell mtDNA damage and monocyte recruitment. We reason that SPHK1 signaling may be an innovative therapeutic target for managing patients with IPF and other forms of lung fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Metanol/análogos & derivados , Fibrosis Pulmonar/tratamiento farmacológico , Pirrolidinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Amianto/toxicidad , Bleomicina/farmacología , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Metanol/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Monocitos/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Transducción de Señal/efectos de los fármacos , Sulfonas
4.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L175-L187, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31090437

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a pernicious lung disease characterized by alveolar epithelial apoptosis, dysregulated repair of epithelial injury, scar formation, and respiratory failure. In this study, we identified phospholipase D (PLD)-generated phosphatidic acid (PA) signaling in the development of pulmonary fibrosis (PF). Of the PLD isoenzymes, the protein expression of PLD2, but not PLD1, was upregulated in lung tissues from IPF patients and bleomycin challenged mice. Both PLD1 (Pld1-/-)- and PLD2 (Pld2-/-)-deficient mice were protected against bleomycin-induced lung inflammation and fibrosis, thereby establishing the role of PLD in fibrogenesis. The role of PLD1 and PLD2 in bleomycin-induced lung epithelial injury was investigated by infecting bronchial airway epithelial cells (Beas2B) with catalytically inactive mutants of PLD (hPLD1-K898R or mPld2-K758R) or downregulation of expression of PLD1 or PLD2 with siRNA. Bleomycin stimulated mitochondrial (mt) superoxide production, mtDNA damage, and apoptosis in Beas2B cells, which was attenuated by the catalytically inactive mutants of PLD or PLD2 siRNA. These results show a role for PLD1 and PLD2 in bleomycin-induced generation of mt reactive oxygen species, mt DNA damage, and apoptosis of lung epithelial cells in mice. Thus, PLD may be a novel therapeutic target in ameliorating experimental PF in mice.


Asunto(s)
Bleomicina/farmacología , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fosfolipasa D/metabolismo , Animales , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Fosfolipasa D/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
FASEB J ; 31(6): 2520-2532, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28258190

RESUMEN

Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.


Asunto(s)
Células Epiteliales Alveolares/patología , Apoptosis/fisiología , ADN Mitocondrial/fisiología , Fibrosis Pulmonar/etiología , Sirtuina 3/metabolismo , Células A549 , Animales , Antibióticos Antineoplásicos/toxicidad , Amianto/toxicidad , Bleomicina/toxicidad , Daño del ADN , Humanos , Ratones , Ratones Noqueados , Oxidantes/toxicidad , Fibrosis Pulmonar/metabolismo , Sirtuina 3/genética
6.
Am J Physiol Cell Physiol ; 312(6): C749-C764, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424170

RESUMEN

Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program.


Asunto(s)
Retroalimentación Fisiológica , Peróxido de Hidrógeno/metabolismo , Glicoproteínas de Membrana/genética , Mitocondrias/metabolismo , NADPH Oxidasas/genética , Transducción de Señal , Técnicas Biosensibles , Catalasa/genética , Catalasa/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , NADPH Oxidasa 2 , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Oxidación-Reducción , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Imagen de Lapso de Tiempo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L16-L26, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28428174

RESUMEN

Alveolar epithelial cell (AEC) apoptosis and inadequate repair resulting from "exaggerated" lung aging and mitochondrial dysfunction are critical determinants promoting lung fibrosis. α-Klotho, which is an antiaging molecule that is expressed predominantly in the kidney and secreted in the blood, can protect lung epithelial cells against hyperoxia-induced apoptosis. We reasoned that Klotho protects AEC exposed to oxidative stress in part by maintaining mitochondrial DNA (mtDNA) integrity and mitigating apoptosis. We find that Klotho levels are decreased in both serum and alveolar type II (AT2) cells from asbestos-exposed mice. We show that oxidative stress reduces AEC Klotho mRNA and protein expression, whereas Klotho overexpression is protective while Klotho silencing augments AEC mtDNA damage. Compared with wild-type, Klotho heterozygous hypomorphic allele (kl/+) mice have increased asbestos-induced lung fibrosis due in part to increased AT2 cell mtDNA damage. Notably, we demonstrate that serum Klotho levels are reduced in wild-type but not mitochondrial catalase overexpressing (MCAT) mice 3 wk following exposure to asbestos and that EUK-134, a MnSOD/catalase mimetic, mitigates oxidant-induced reductions in AEC Klotho expression. Using pharmacologic and genetic silencing studies, we show that Klotho attenuates oxidant-induced AEC mtDNA damage and apoptosis via mechanisms dependent on AKT activation arising from upstream fibroblast growth factor receptor 1 activation. Our findings suggest that Klotho preserves AEC mtDNA integrity in the setting of oxidative stress necessary for preventing apoptosis and asbestos-induced lung fibrosis. We reason that strategies aimed at augmenting AEC Klotho levels may be an innovative approach for mitigating age-related lung diseases.


Asunto(s)
Envejecimiento/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Apoptosis/efectos de los fármacos , Daño del ADN , ADN Mitocondrial/metabolismo , Glucuronidasa/metabolismo , Oxidantes/toxicidad , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Apoptosis/genética , Amianto , Catalasa/metabolismo , Línea Celular , Daño del ADN/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucuronidasa/deficiencia , Glucuronidasa/genética , Proteínas Klotho , Masculino , Ratones , Mitocondrias/metabolismo , Compuestos Organometálicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , ARN Mensajero/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Salicilatos/farmacología , Transducción de Señal/efectos de los fármacos
8.
Am J Respir Cell Mol Biol ; 52(1): 25-36, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24918270

RESUMEN

Asbestos causes asbestosis and malignancies by mechanisms that are not fully established. Alveolar epithelial cell (AEC) injury and repair are crucial determinants of the fibrogenic potential of noxious agents such as asbestos. We previously showed that mitochondrial reactive oxygen species mediate asbestos-induced AEC intrinsic apoptosis and that mitochondrial human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme, prevents oxidant-induced AEC apoptosis. We reasoned that OGG1 deficiency augments asbestos-induced pulmonary fibrosis. Compared with intratracheal instillation of PBS (50 µl) or titanium dioxide (100 µg/50 µl), crocidolite or Libby amphibole asbestos (100 µg/50 µl) each augmented pulmonary fibrosis in wild-type C57BL/6J (WT) mice after 3 weeks as assessed by histology, fibrosis score, lung collagen via Sircol, and type 1 collagen expression; these effects persisted at 2 months. Compared with WT mice, Ogg1 homozygous knockout (Ogg1(-/-)) mice exhibit increased pulmonary fibrosis after crocidolite exposure and apoptosis in cells at the bronchoalveolar duct junctions as assessed via cleaved caspase-3 immunostaining. AEC involvement was verified by colocalization studies using surfactant protein C. Asbestos increased endoplasmic reticulum stress in the lungs of WT and Ogg1(-/-) mice. Compared with WT, alveolar type 2 cells isolated from Ogg1(-/-) mice have increased mtDNA damage, reduced mitochondrial aconitase expression, and increased P53 and cleaved caspase-9 expression, and these changes were enhanced 3 weeks after crocidolite exposure. These findings suggest an important role for AEC mtDNA integrity maintained by OGG1 in the pathogenesis of pulmonary fibrosis that may represent a novel therapeutic target.


Asunto(s)
Células Epiteliales Alveolares/enzimología , Asbesto Crocidolita/toxicidad , ADN Glicosilasas/metabolismo , Fibrosis Pulmonar/enzimología , Células Epiteliales Alveolares/patología , Animales , Daño del ADN/genética , ADN Glicosilasas/genética , ADN Glicosilasas/inmunología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Ratones , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Factores de Tiempo
9.
J Biol Chem ; 289(9): 6165-76, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24429287

RESUMEN

Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5-25 µg/cm(2)) or H2O2 (100-250 µM)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/ß 317-323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1(-/-) mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.


Asunto(s)
Aconitato Hidratasa/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Mitocondrial/metabolismo , Células Epiteliales/enzimología , Mitocondrias/enzimología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Alveolos Pulmonares/enzimología , Aconitato Hidratasa/genética , Animales , Apoptosis/efectos de los fármacos , Asbesto Amosita/toxicidad , Línea Celular Tumoral , ADN Glicosilasas/genética , ADN Mitocondrial/genética , Células Epiteliales/patología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Mutación , Oxidantes/efectos adversos , Alveolos Pulmonares/patología , Ratas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Int J Mol Sci ; 16(9): 21486-519, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26370974

RESUMEN

Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Apoptosis/genética , ADN Mitocondrial , Fibrosis Pulmonar/genética , Envejecimiento , Animales , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Modelos Animales de Enfermedad , Guanina/análogos & derivados , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
11.
Biochim Biophys Acta ; 1832(7): 1028-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23219955

RESUMEN

Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-ß1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.


Asunto(s)
Estrés Oxidativo , Fibrosis Pulmonar , Animales , Apoptosis/efectos de los fármacos , ADN Mitocondrial/genética , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
12.
Mol Cancer ; 13: 222, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25255877

RESUMEN

BACKGROUND: The metastasis of hematogenous cancer cells is associated with abnormal glycosylation such as sialyl lewis antigens. Although the hepatitis B virus X protein (HBx) plays important role in liver disease, the precise function of HBx on aberrant glycosylation for metastasis remains unclear. METHODS: The human hepatocellular carcinoma tissues, HBx transgenic mice and HBx-transfected cells were used to check the correlation of expressions between HBx and Sialyl lewis antigen for cancer metastasis. To investigate whether expression levels of glycosyltransferases induced in HBx-transfected cells are specifically associated with sialyl lewis A (SLA) synthesis, which enhances metastasis by interaction of liver cancer cells with endothelial cells, ShRNA and siRNAs targeting specific glycosyltransferases were used. RESULTS: HBx expression in liver cancer region of HCC is associated with the specific synthesis of SLA. Furthermore, the SLA was specifically induced both in liver tissues from HBx-transgenic mice and in in vitro HBx-transfected cells. HBx increased transcription levels and activities of α2-3 sialyltransferases (ST3Gal III), α1-3/4 fucosyltransferases III and VII (FUT III and VII) genes, which were specific for SLA synthesis, allowing dramatic cell-cell adhesion for metastatic potential. Interestingly, HBx specifically induced expression of N-acetylglucosamine-ß1-3 galactosyltransferase V (ß1-3GalT 5) gene associated with the initial synthesis of sialyl lewis A, but not ß1-4GalT I. The ß1-3GalT 5 shRNA suppressed SLA expression by HBx, blocking the adhesion of HBx-transfected cells to the endothelial cells. Moreover, ß1-3GalT 5 silencing suppressed lung metastasis of HBx-transfected cells in in vivo lung metastasis system. CONCLUSION: HBx targets the specific glycosyltransferases for the SLA synthesis and this process regulates hematogenous cancer cell adhesion to endothelial cells for cancer metastasis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glicosiltransferasas/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Hígado/virología , Oligosacáridos/metabolismo , Transactivadores/metabolismo , Adulto , Animales , Antígeno CA-19-9 , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glicosilación , Virus de la Hepatitis B/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Antígeno Lewis X/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Metástasis de la Neoplasia/patología , Antígeno Sialil Lewis X , Proteínas Reguladoras y Accesorias Virales
13.
Biochem J ; 449(1): 241-51, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23050851

RESUMEN

TGF-ß (transforming growth factor-ß)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-ß-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-ß1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-ß1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-ß1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-ß. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-ß1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFßRs (TGF-ß receptors) in TGF-ß1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-ß1 regulates EMT by potential interaction with TGFßRs.


Asunto(s)
Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Cristalino/citología , Cristalino/metabolismo , Sialiltransferasas/química , Factor de Crecimiento Transformador beta1/fisiología , Secuencia de Bases , Línea Celular , Células Epiteliales/metabolismo , Humanos , Mesodermo/metabolismo , Datos de Secuencia Molecular , Sialiltransferasas/fisiología , Factor de Crecimiento Transformador beta1/química
14.
Am J Respir Cell Mol Biol ; 49(6): 892-901, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23885834

RESUMEN

Asbestos exposure results in pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully understood. Alveolar epithelial cell (AEC) apoptosis is important in the development of pulmonary fibrosis after exposure to an array of toxins, including asbestos. An endoplasmic reticulum (ER) stress response and mitochondria-regulated (intrinsic) apoptosis occur in AECs of patients with idiopathic pulmonary fibrosis, a disease with similarities to asbestosis. Asbestos induces AEC intrinsic apoptosis, but the role of the ER is unclear. The objective of this study was to determine whether asbestos causes an AEC ER stress response that promotes apoptosis. Using human A549 and rat primary isolated alveolar type II cells, amosite asbestos fibers increased AEC mRNA and protein expression of ER stress proteins involved in the unfolded protein response, such as inositol-requiring kinase (IRE) 1 and X-box-binding protein-1, as well as ER Ca²(2+) release ,as assessed by a FURA-2 assay. Eukarion-134, a superoxide dismutase/catalase mimetic, as well as overexpression of Bcl-XL in A549 cells each attenuate asbestos-induced AEC ER stress (IRE-1 and X-box-binding protein-1 protein expression; ER Ca²(2+) release) and apoptosis. Thapsigargin, a known ER stress inducer, augments AEC apoptosis, and eukarion-134 or Bcl-XL overexpression are protective. Finally, 4-phenylbutyric acid, a chemical chaperone that attenuates ER stress, blocks asbestos- and thapsigargin-induced AEC IRE-1 protein expression, but does not reduce ER Ca²(2+) release or apoptosis. These results show that asbestos triggers an AEC ER stress response and subsequent intrinsic apoptosis that is mediated in part by ER Ca²(2+) release.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Apoptosis/efectos de los fármacos , Asbesto Amosita/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales Alveolares/fisiología , Animales , Antioxidantes/farmacología , Apoptosis/fisiología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Compuestos Organometálicos/farmacología , Fenilbutiratos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Factores de Transcripción del Factor Regulador X , Salicilatos/farmacología , Tapsigargina/farmacología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 302(3): H724-32, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22101521

RESUMEN

p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.


Asunto(s)
Células Endoteliales/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Neovascularización Fisiológica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Caveolas/enzimología , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microdominios de Membrana/enzimología , Fosforilación/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/metabolismo
16.
iScience ; 25(7): 104669, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35856022

RESUMEN

Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-ß1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy.

17.
Biosci Biotechnol Biochem ; 75(5): 841-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21597199

RESUMEN

We assessed the effects of chloroform extract of fermented Viola mandshurica (CEFV) on melanogenesis B16 melanoma cells. CEFV treatment significantly decreased melanin content and tyrosinase activity in dose-dependent manners. To elucidate the mechanism of the inhibitory effects of CEFV on melanogenesis, we performed RT-PCR and Western blotting for melanogenesis-related genes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF). CEFV strongly inhibited mRNA as well as the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1 or TRP-2 expressions. It markedly decreased the phosphorylation of cAMP responsive element binding protein (CREB), and induced the duration of extracellular signal-regulated kinase (ERK) activation, leading to reduction of MITF expression and subsequently that of tyrosinase. Therefore, we suggest that CEFV induces downregulation of melanogenesis through decreased CREB phosphorylation and ERK activation.


Asunto(s)
Fermentación , Melaninas/biosíntesis , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Extractos Vegetales/farmacología , Viola/química , Viola/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Melanoma Experimental/enzimología , Melanoma Experimental/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Biomater Sci ; 9(16): 5497-5507, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34075946

RESUMEN

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein, magnetic nano-transducers, which convert external magnetic fields into physical stress, are designed to induce mitochondrial dysfunction to remotely kill cancer cells. Spindle-shaped iron oxide nanoparticles were synthesized to maximize cellular internalization and magnetic transduction. The magneto-mechanical transduction of nano-transducers in mitochondria enhances cancer cell apoptosis by promoting a mitochondrial quality control mechanism, referred to as mitophagy. In the liver cancer animal model, nano-transducers are infused into the local liver tumor via the hepatic artery. After treatment with a magnetic field, in vivo mitophagy-mediated cancer cell death was also confirmed by mitophagy markers, mitochondrial DNA damage assay, and TUNEL staining of tissues. This study is expected to contribute to the development of nanoparticle-mediated mitochondria-targeting cancer therapy and biological tools, such as magneto-genetics.


Asunto(s)
Mitofagia , Neoplasias , Animales , Apoptosis , Línea Celular Tumoral , Humanos , Fenómenos Magnéticos , Mitocondrias , Neoplasias/terapia
19.
Immunopharmacol Immunotoxicol ; 32(4): 600-6, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20131957

RESUMEN

Our previous study has demonstrated that the methanol extract of Hyul-Tong-Ryung (HM) specifically suppresses the phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) production through the inhibition of MMP-9 mRNA expression in MCF-7 human breast carcinoma cells. However, the molecular mechanisms involved in transcriptional suppression of MMP-9 by HM in PMA-induced MCF-7 cells are not known. In this study, we aimed to elucidate the molecular mechanisms involved in the inhibition of MMP-9 expression by HM in PMA-induced MCF-7 cells. The results of promoter assay and EMSA showed that HM specifically inhibits MMP-9 gene expression by blocking PMA-stimulated activation of activator protein-1 (AP-1). In addition, PMA-stimulated phosphorylation of extracellular signal regulated kinase 1/2 (ERK 1/2) was suppressed by HM treatment, whereas the phosphorylation of either c-Jun N-terminal kinase (JNK) or p38 mitogen-activated protein kinase (MAPK) was not affected. HM could inhibit the PMA-induced MMP-9 expression through suppression of the transcriptional activity of MMP-9 gene in MCF-7 cells. These results indicate that HM inhibits PMA-induced MMP-9 expression by blocking the activation of activator protein-1 (AP-1) via extracellular signal regulated kinase 1/2 (ERK 1/2) signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Transducción de Señal/fisiología , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción AP-1/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Expresión Génica/genética , Genes Reporteros/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación/genética , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Inhibidores de Proteínas Quinasas/farmacología , Elementos de Respuesta/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Transfección
20.
Glycobiology ; 19(3): 229-39, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18974200

RESUMEN

Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Gangliósido G(M3)/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Endotelio/metabolismo , Endotelio Vascular/citología , Humanos , Venas Umbilicales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA