Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(2): 505-517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167865

RESUMEN

Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.2158 T > C, a mtSNP associated with reduced PD risk, within the small open reading frame encoding SHLP2. This mtSNP results in an alternative form of SHLP2 (lysine 4 replaced with arginine; K4R). Using targeted mass spectrometry, we detect specific tryptic fragments of SHLP2 in neuronal cells and demonstrate its binding to mitochondrial complex 1. Notably, we observe that the K4R variant, associated with reduced PD risk, exhibits increased stability compared to WT SHLP2. Additionally, both WT and K4R SHLP2 show enhanced protection against mitochondrial dysfunction in in vitro experiments and confer protection against a PD-inducing toxin, a mitochondrial complex 1 inhibitor, in a mouse model. This study sheds light on the functional consequences of the m.2158 T > C mtSNP on SHLP2 and provides insights into the potential mechanisms by which this mtSNP may reduce the risk of PD.


Asunto(s)
Mitocondrias , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Animales , Ratones , Humanos , Polimorfismo de Nucleótido Simple/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , Factores Protectores , Ratones Endogámicos C57BL , Neuronas/metabolismo , Modelos Animales de Enfermedad , Masculino , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Péptidos/genética , Péptidos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Péptidos y Proteínas de Señalización Intracelular
2.
Am J Physiol Endocrinol Metab ; 326(3): E207-E214, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170165

RESUMEN

Mitochondrial open reading frame of the 12S ribosomal RNA type-c (MOTS-c), a mitochondrial microprotein, has been described as a novel regulator of glucose and lipid metabolism. In addition to its role as a metabolic regulator, MOTS-c prevents skeletal muscle atrophy in high fat-fed mice. Here, we examined the preventive effect of MOTS-c on skeletal muscle mass, using an immobilization-induced muscle atrophy model, and explored its underlying mechanisms. Male C57BL/6J mice (10 wk old) were randomly assigned to one of the three experimental groups: nonimmobilization control group (sterilized water injection), immobilization control group (sterilized water injection), and immobilization and MOTS-c-treated group (15 mg/kg/day MOTS-c injection). We used casting tape for the immobilization experiment. After 8 days of the experimental period, skeletal muscle samples were collected and used for Western blotting, RNA sequencing, and lipid and collagen assays. Immobilization reduced ∼15% of muscle mass, whereas MOTS-c treatment attenuated muscle loss, with only a 5% reduction. MOTS-c treatment also normalized phospho-AKT, phospho-FOXO1, and phospho-FOXO3a expression levels and reduced circulating inflammatory cytokines, such as interleukin-1b (IL-1ß), interleukin-6 (IL-6), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1), in immobilized mice. Unbiased RNA sequencing and its downstream analyses demonstrated that MOTS-c modified adipogenesis-modulating gene expression within the peroxisome proliferator-activated receptor (PPAR) pathway. Supporting this observation, muscle fatty acid levels were lower in the MOTS-c-treated group than in the casted control mice. These results suggest that MOTS-c treatment inhibits skeletal muscle lipid infiltration by regulating adipogenesis-related genes and prevents immobilization-induced muscle atrophy.NEW & NOTEWORTHY MOTS-c, a mitochondrial microprotein, attenuates immobilization-induced skeletal muscle atrophy. MOTS-c treatment improves systemic inflammation and skeletal muscle AKT/FOXOs signaling pathways. Furthermore, unbiased RNA sequencing and subsequent assays revealed that MOTS-c prevents lipid infiltration in skeletal muscle. Since lipid accumulation is one of the common pathologies among other skeletal muscle atrophies induced by aging, obesity, cancer cachexia, and denervation, MOTS-c treatment could be effective in other muscle atrophy models as well.


Asunto(s)
Micropéptidos , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Agua , Lípidos
3.
Mol Psychiatry ; 28(4): 1813-1826, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36127429

RESUMEN

Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , ADN Mitocondrial/genética , Biomarcadores/líquido cefalorraquídeo , Micropéptidos
4.
Foodborne Pathog Dis ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442228

RESUMEN

Multidrug-resistant (MDR) Salmonella enterica serovar Agona infections affect public health globally. This investigation aimed to ascertain the antimicrobial resistance profiles and molecular characteristics of Salmonella Agona isolates obtained from food-producing animals. A total of 209 Salmonella Agona isolates were recovered from mostly chickens (139 isolates), pigs (56 isolates), cattle (11 isolates), and ducks (3 isolates) between 2010 and 2020 in South Korea. In addition, these Salmonella Agona isolates were obtained from 25 slaughterhouses nationwide. Furthermore, this serotype suddenly increased in chickens in 2020. Salmonella Agona from chickens showed high resistance (69-83%) to ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and chloramphenicol. Moreover, chicken/duck isolates (83.1%) showed significantly higher levels of MDR than cattle/pig isolates (1.5%). For molecular analysis by pulsed-field gel electrophoresis, infrared spectroscopy biotyping, and multilocus sequence typing in combination, a total of 23 types were observed. Especially two major types, P1-III-2-13 and P1-IV-2-13, comprised 59.3% of the total isolates spreading in most farms. Moreover, Salmonella Agona sequence type (ST)13 was predominant (96.7%) among three different STs (ST13, ST11, and ST292) widely detected in chickens (94.3%) in most farms located nationwide. Taken together, MDR Salmonella Agona in chickens might pose a potential risk to public health through direct contact or the food chain.

5.
Lipids Health Dis ; 22(1): 183, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37885013

RESUMEN

BACKGROUND: Ceramide, a bioactive signaling sphingolipid, has long been implicated in cancer. Members of the ceramide synthase (CerS) family determine the acyl chain lengths of ceramides, with ceramide synthase 4 (CerS4) primarily generating C18-C20-ceramide. Although CerS4 is known to be overexpressed in breast cancer, its role in breast cancer pathogenesis is not well established. METHODS: To investigate the role of CerS4 in breast cancer, public datasets, including The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE115577 and GSE96058) were analyzed. Furthermore, MCF-7 cells stably overexpressing CerS4 (MCF-7/CerS4) as a model for luminal subtype A (LumA) breast cancer were produced, and doxorubicin (also known as Adriamycin [AD])-resistant MCF-7/ADR cells were generated after prolonged treatment of MCF-7 cells with doxorubicin. Kaplan-Meier survival analysis assessed the clinical significance of CERS4 expression, while Student's t-tests or Analysis of Variance (ANOVA) compared gene expression and cell viability in different MCF-7 cell lines. RESULTS: Analysis of the public datasets revealed elevated CERS4 expression in breast cancer, especially in the most common breast cancer subtype, LumA. Persistent CerS4 overexpression in MCF-7 cells activated multiple cancer-associated pathways, including pathways involving sterol regulatory element-binding protein, nuclear factor kappa B (NF-κB), Akt/mammalian target of rapamycin (mTOR), and ß-catenin. Furthermore, MCF-7/CerS4 cells acquired doxorubicin, paclitaxel, and tamoxifen resistance, with concomitant upregulation of ATP-binding cassette (ABC) transporter genes, such as ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2. MCF-7/CerS4 cells were characterized by increased cell migration and epithelial-mesenchymal transition (EMT). Finally, CERS4 knockdown in doxorubicin-resistant MCF-7/ADR cells resulted in reduced activation of cancer-associated pathways (NF-κB, Akt/mTOR, ß-catenin, and EMT) and diminished chemoresistance, accompanied by ABCB1 and ABCC1 downregulation. CONCLUSIONS: Chronic CerS4 overexpression may exert oncogenic effects in breast cancer via alterations in signaling, EMT, and chemoresistance. Therefore, CerS4 may represent an attractive target for anticancer therapy, especially in LumA breast cancer.


Asunto(s)
Neoplasias de la Mama , Esfingosina N-Aciltransferasa , Femenino , Humanos , Transportadoras de Casetes de Unión a ATP , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de la Mama/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Esfingosina N-Aciltransferasa/genética , Células MCF-7
6.
BMC Ophthalmol ; 23(1): 59, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765328

RESUMEN

BACKGROUND: Optimal sizing for phakic intraocular lens (EVO-ICL with KS-AquaPort) implantation plays an important role in preventing postoperative complications. We aimed to formulate optimal lens sizing using ocular biometric parameters measured with a Heidelberg anterior segment optical coherence tomography (AS-OCT) device. METHODS: We retrospectively analyzed 892 eyes of 471 healthy subjects treated with an intraocular collamer lens (ICL) and assigned them to either the development (80%) or validation (20%) set. We built vault prediction models using the development set via classic linear regression methods as well as partial least squares and least absolute shrinkage and selection operator (LASSO) regression techniques. We evaluated prediction abilities based on the Bayesian information criterion (BIC) to select the best prediction model. The performance was measured using Pearson's correlation coefficient and the mean squared error (MAE) between the achieved and predicted results. RESULTS: Measurements of aqueous depth (AQD), anterior chamber volume, anterior chamber angle (ACA) distance, spur-to-spur distance, crystalline lens thickness (LT), and white-to-white distance from ANTERION were highly associated with the ICL vault. The LASSO model using the AQD, ACA distance, and LT showed the best BIC results for postoperative ICL vault prediction. In the validation dataset, the LASSO model showed the strongest correlation (r = 0.582, P < 0.001) and the lowest MAE (104.7 µm). CONCLUSION: This is the first study to develop a postoperative ICL vault prediction and lens-sizing model based on the ANTERION. As the measurements from ANTERION and other AS-OCT devices are not interchangeable, ANTERION may be used for optimal ICL sizing using our formula. Because our model was developed based on the East Asian population, further studies are needed to explore the role of this prediction model in different populations.


Asunto(s)
Miopía , Lentes Intraoculares Fáquicas , Humanos , Tomografía de Coherencia Óptica/métodos , Estudios Retrospectivos , Implantación de Lentes Intraoculares/métodos , Teorema de Bayes , Miopía/cirugía , Cámara Anterior/diagnóstico por imagen
7.
Foodborne Pathog Dis ; 20(1): 7-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577050

RESUMEN

Antimicrobial-resistant bacteria isolated from food animals pose a major health threat to the public on this planet. This study aimed to determine the susceptibility profiles of Escherichia coli isolated from cattle and pig fecal samples and investigate the molecular characteristics of extended-spectrum ß-lactamase (ESBL)-producing E. coli using gene identification, conjugation, and Southern blot approach. Overall 293 E. coli were recovered from cattle (120 isolates) and pigs (173 isolates) in 7 provinces of Korea during 2017-2018. Ampicillin, chloramphenicol, streptomycin, and sulfisoxazole resistance rates were the highest in pigs' isolates (>60%, p ≤ 0.001) compared to that in cattle (3-39%). Multidrug resistance (MDR) was higher in pig isolates (73%) than in cattle (31%), and the MDR profile usually includes streptomycin, sulfisoxazole, and tetracycline. Resistance to critically important antimicrobials such as ceftiofur, colistin, and ciprofloxacin was higher in weaners than those from finishers in pigs. The qnrS gene was detected in 13% of the pig isolates. Eight isolates from pigs and one isolate from cattle were identified as ESBL-producers and ESBL genes belonged to blaCTX-M-55 (n = 4), blaCTX-M-14 (n = 3), and blaCTX-M-65 (n = 2). Notably, the blaCTX-M-65 and qnrS1 genes were found to be carried together in an identical plasmid (IncHI2) in two isolates from finisher pigs. The blaCTX-M-carrying isolates belonged to phylogenetic groups B1 (n = 4), B2 (n = 2), A (n = 2), and D (n = 1). The blaCTX-M genes and non-ß-lactam resistance traits were transferred to the E. coli J53 recipient from seven blaCTX-M-positive strains isolated from pigs. The blaCTX-M genes belonged to the IncI1α, IncFII, and IncHI2 plasmids and are also associated with the ISEcp1, IS26, IS903, and orf477 elements. These findings suggested the possibility of blaCTX-M-carrying E. coli transmission to humans through direct contact with cattle and pigs or contamination of food products.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Animales , Bovinos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , beta-Lactamasas/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Filogenia , Plásmidos/genética , República de Corea/epidemiología , Estreptomicina/farmacología , Sulfisoxazol/farmacología , Porcinos
8.
Foodborne Pathog Dis ; 20(11): 492-501, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699238

RESUMEN

The production of ß-lactamase by nontyphoidal Salmonella has become a public health issue throughout the world. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ß-lactamase-producing Salmonella enterica serovar Albany isolates. A total of 434 Salmonella Albany were obtained from feces and carcasses of healthy and diseased food-producing animals [cattle (n = 2), pigs (n = 3), chickens (n = 391), and ducks (n = 38)] during 2013-2020. Among the 434 Salmonella Albany isolates, 3.7% showed resistance to cefoxitin, and all the cefoxitin-resistant isolates were obtained from chickens. Moreover, Salmonella Albany isolates demonstrated high resistance to nalidixic acid (99.3%), trimethoprim/sulfamethoxazole (97.9%), ampicillin (86.6%), chloramphenicol (86.6%), and tetracycline (85.7%), as well as higher rates of multidrug resistance were detected in cefoxitin-resistant isolates compared to cefoxitin-susceptible isolates. All cefoxitin-resistant isolates harbored CMY-2-type ß-lactamase and belonged to seven different pulsotypes, with type IV-b (43.75%) and IV-a (25%) making up the majority. In addition, genes encoding cefoxitin resistant of all blaCMY-2-harboring Salmonella Albany isolates were horizontally transmitted to a recipient Escherichia coli J53 by conjugation. Furthermore, 93.75% (15/16) of conjugative plasmids harboring blaCMY-2 genes belong to ST12/CC12-IncI1. Genetic characteristics of transmitted blaCMY-2 genes were associated with ISEcp1, which can play an essential role in the effective mobilization and expression of these genes. Salmonella Albany containing blaCMY-2 in chickens can potentially be transferred to humans. Therefore, it is necessary to restrict antibiotic use and conduct continuous monitoring and analysis of resistant bacteria in the poultry industry.


Asunto(s)
Pollos , Salmonella enterica , Humanos , Animales , Porcinos , Bovinos , Pollos/microbiología , Cefoxitina/farmacología , Serogrupo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Salmonella/genética , República de Corea , Escherichia coli , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana Múltiple , Plásmidos
9.
Foodborne Pathog Dis ; 19(10): 663-674, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36125409

RESUMEN

Extended-spectrum ß-lactamase (ESBL)-producing Salmonella enterica serovar Enteritidis has emerged as a public health concern. The main objectives of this study were therefore to determine the antimicrobial susceptibility profiles of Salmonella Enteritidis and to investigate the molecular characteristics of identified ESBL-producing isolates. In the study, 237 Salmonella Enteritidis isolates (232 isolates from chickens, 4 from cattle, and 1 from a pig) were recovered from carcasses and fecal samples of healthy and diseased food animals between 2010 and 2017. Ceftiofur resistance was noted only in chicken isolates (43%, 102/237), with the highest in healthy chickens and their carcasses (48.3%, 83/172) compared with that in diseased chickens (31.7%, 19/60). All of the ceftiofur-resistant isolates exhibited resistance to multiple antimicrobials. Indeed, a relatively higher percentage of ceftiofur-resistant isolates demonstrated resistance to the tested aminoglycosides and tetracycline compared with the ceftiofur-susceptible strains. In this study, blaCTX-M-15 was the only ESBL gene detected in all of the ceftiofur-resistant isolates. The blaCTX-M-15-carrying isolates belonged to 11 different pulsotypes. The blaCTX-M-15 gene was transferred from 20.6% (21/102) of the blaCTX-M-15-harboring isolates to a recipient Escherichia coli J53. The coexistence of IncHI2/ST2 and IncFIIs/ST1 plasmids was noted in the majority (81.8%, 18/22) of the transconjugants. E. coli J53 transconjugants carrying blaCTX-M-15 gene showed distinct genetic environments, predominantly ISEcp1-blaCTX-M-15-orf477 (15/21, 71.4%). This study demonstrated that healthy chickens and their carcasses act as reservoirs of blaCTX-M-15-carrying Salmonella Enteritidis that can potentially be transmitted to humans.


Asunto(s)
Infecciones por Escherichia coli , Salmonella enterica , Animales , Bovinos , Humanos , Aminoglicósidos , Antibacterianos/farmacología , beta-Lactamasas/genética , Pollos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli , Proteína 1 Similar al Receptor de Interleucina-1 , Salmonella enterica/genética , Salmonella enteritidis/genética , Porcinos , Tetraciclinas , República de Corea
10.
Am J Physiol Endocrinol Metab ; 320(4): E680-E690, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554779

RESUMEN

Obesity and type 2 diabetes are metabolic diseases, often associated with sarcopenia and muscle dysfunction. MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and has been implicated in metabolic homeostasis. Although MOTS-c improves insulin sensitivity in skeletal muscle, whether MOTS-c impacts muscle atrophy is not known. Myostatin is a negative regulator of skeletal muscle mass and also one of the possible mediators of insulin resistance-induced skeletal muscle wasting. Interestingly, we found that plasma MOTS-c levels are inversely correlated with myostatin levels in human subjects. We further demonstrated that MOTS-c prevents palmitic acid-induced atrophy in differentiated C2C12 myotubes, whereas MOTS-c administration decreased myostatin levels in plasma in diet-induced obese mice. By elevating AKT phosphorylation, MOTS-c inhibits the activity of an upstream transcription factor for myostatin and other muscle wasting genes, FOXO1. MOTS-c increases mTORC2 and inhibits PTEN activity, which modulates AKT phosphorylation. Further upstream, MOTS-c increases CK2 activity, which leads to PTEN inhibition. These results suggest that through inhibition of myostatin, MOTS-c could be a potential therapy for insulin resistance-induced skeletal muscle atrophy as well as other muscle wasting phenotypes including sarcopenia.NEW & NOTEWORTHY MOTS-c, a mitochondrial-derived peptide reduces high-fat-diet-induced muscle atrophy signaling by reducing myostatin expression. The CK2-PTEN-mTORC2-AKT-FOXO1 pathways play key roles in MOTS-c action on myostatin expression.


Asunto(s)
Proteínas Mitocondriales/fisiología , Atrofia Muscular/metabolismo , Miostatina/sangre , Miostatina/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Dieta Alta en Grasa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas Mitocondriales/sangre , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/etiología , Miostatina/metabolismo , Ácido Palmítico , Transducción de Señal/fisiología , Adulto Joven
11.
Circ Res ; 125(2): 152-166, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31096851

RESUMEN

RATIONALE: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS: Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS: Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.


Asunto(s)
Proliferación Celular , Ciclina D1/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Factor de Transcripción GATA4/metabolismo , Miocitos del Músculo Liso/metabolismo , Túnica Íntima/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/genética , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Hiperplasia/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/fisiología , Túnica Íntima/patología
12.
Exp Cell Res ; 393(2): 112056, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387288

RESUMEN

Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins that modify cell metabolism. The the eight MDPs that been characterized (e.g., humanin, MOTS-c, SHLPs1-6) attenuate disease pathology including Alzheimer's disease, prostate cancer, macular degeneration, cardiovascular disease, and diabetes. The association between disease and human genetic variation in MDPs is underexplored, although two polymorphisms in humanin and MOTS-c associate with cognitive decline and diabetes, respectively, suggesting a precise role for MDPs in disease-modification. There could be hundreds of additional MDPs that have yet to be discovered. Altogether, MDPs could explain unanswered biological and metabolic questions and are part of a growing field of novel microproteins encoded by small open reading frames. In this review, the current state of MDPs are summarized with an emphasis on biological and therapeutic implications.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/metabolismo , Sistemas de Lectura Abierta/genética , Péptidos/genética , Enfermedades Cardiovasculares/genética , Genómica/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Péptidos/metabolismo
13.
J Dairy Sci ; 104(1): 969-976, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162097

RESUMEN

We identified 199 Staphylococcus aureus isolates from quarter milk samples of 1,289 dairy cattle between 2014 and 2018. About 66% of the isolates were resistant to at least 1 antimicrobial agent; the highest rate of resistance was to penicillin, followed by resistance to ampicillin, erythromycin, and sulfadimethoxine. We obtained 30 methicillin-resistant S. aureus (MRSA) strains from 6 farms in 3 provinces. The MRSA strains exhibited a significantly higher resistance rate to most of the tested antimicrobials than the oxacillin-susceptible strains. The MRSA strains represented 5 genotypes: ST72-t324-SCCmec IV (n = 14), ST30-t1752-SCCmec IV (n = 8), ST188-t189-SCCmec NT (n = 6), ST188-t2284-SCCmec NT (n = 1), and NT-NT-SCCmec IV (n = 1). One of the ST188 MRSA strains represented a novel staphylococcal protein A (spa) type (t2284). In addition, 7 of the 8 ST30 MRSA strains were Panton-Valentine leukocidin (PVL)-positive and carried various staphylococcal enterotoxin encoding genes. This is the first report of PVL-positive ST30 MRSA-t1752-SCCmec IV from bovine mastitis in Korea. All of ST72-t324-SCCmec IV MRSA strains carried staphylococcal enterotoxin and leukotoxin encoding genes. They were also sensitive to most of the tested non-ß-lactam antimicrobials. In contrast, ST188-t189 MRSA strains were resistant to multiple antimicrobials and predominantly carried the leukotoxin encoding gene. Taken together, these findings may indicate that dairy cows could be a major source for spreading MRSA strains, and contaminated milk could be a vehicle for transmission. Suitable hygienic measures should be established in dairy farms and processing plants to limit the likelihood of introducing MRSA into the food chain.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Leucocidinas/metabolismo , Mastitis Bovina/microbiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Leche/microbiología , Infecciones Estafilocócicas/veterinaria , Animales , Bovinos , Enterotoxinas/genética , Exotoxinas/genética , Femenino , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , República de Corea , Infecciones Estafilocócicas/microbiología
14.
Foodborne Pathog Dis ; 18(6): 388-397, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33769832

RESUMEN

Contamination of meat with antimicrobial-resistant bacteria represents a major public health threat worldwide. In this study, we determined the antimicrobial resistance profiles and resistance trends of Staphylococcus aureus isolated from major food animal carcasses (408 cattle, 1196 pig, and 1312 chicken carcass isolates) in Korea from 2010 to 2018. Approximately 75%, 92%, and 77% of cattle, pig, and chicken carcass isolates, respectively, were resistant to at least one antimicrobial agent. Resistance to penicillin (62.1%) was the highest, followed by resistance to tetracycline (42.1%) and erythromycin (28.2%). About 30% of pig and chicken isolates were resistant to ciprofloxacin. We observed linezolid resistance only in pig isolates (2.3%). However, all S. aureus isolates were sensitive to rifampin and vancomycin. We noted an increasing but fluctuating trend of kanamycin and penicillin resistance in cattle isolates. Similarly, the chloramphenicol, ciprofloxacin, tetracycline, and trimethoprim resistance rates were increased but fluctuated through time in pig isolates. Methicillin-resistant S. aureus (MRSA) accounted for 5%, 8%, and 9% of the cattle, pig, and chicken isolates, respectively. The MRSA strains exhibited significantly high resistance rates to most of the tested antimicrobials, including ciprofloxacin, erythromycin, and tetracycline compared with methicillin-susceptible S. aureus (MSSA) strains. Notably, a relatively high percentage of MRSA strains (5.2%) recovered from pig carcasses were resistant to linezolid compared with MSSA strains (2.1%). In addition, almost 37% of the isolates were multi-drug resistant. S. aureus isolates recovered from major food animal carcasses in Korea exhibited resistance to clinically important antimicrobials, posing a public health risk.


Asunto(s)
Farmacorresistencia Bacteriana , Microbiología de Alimentos/estadística & datos numéricos , Carne/microbiología , Staphylococcus aureus/aislamiento & purificación , Animales , Bovinos/microbiología , Pollos/microbiología , Pruebas de Sensibilidad Microbiana , Vigilancia de la Población , República de Corea , Porcinos/microbiología
15.
Comput Inform Nurs ; 39(8): 439-449, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33814539

RESUMEN

Postpartum depression is the most common mood disorder that occurs after childbirth, rendering it a significant public health problem. Information and communication technologies hold tremendous promise for expanding the reach of quality mental healthcare and closing the treatment gap for depression. In particular, given that mobile applications are inexpensive and provide information systematically, they are suitable as a method of health management that does not require visiting a medical center. The purposes of this study were to document the process of developing a mobile application for the self-management of postpartum depression and to share usability test results. The mobile application "Happy Mother" was developed based on the first five of seven stages in the mobile application development lifecycle model. Components of cognitive behavioral therapy were adopted to guide content development for "Happy Mother." The usability of the completed mobile application was tested in the following three steps: it increased awareness of mood, promoted self-management, and implemented specific methods a mother can use in her daily life to improve mood, including modifications made based on the results of the usability test.


Asunto(s)
Depresión Posparto , Aplicaciones Móviles , Automanejo , Terapia Cognitivo-Conductual , Depresión Posparto/terapia , Femenino , Humanos , Madres
16.
Am J Physiol Endocrinol Metab ; 319(4): E659-E666, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776825

RESUMEN

Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Péptidos/metabolismo , Animales , Metabolismo Energético/genética , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Péptidos/genética
17.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674502

RESUMEN

Lupus nephritis (LN) is the most frequent phenotype in patients with systemic lupus erythematosus (SLE) and has a high rate of progression to end-stage renal disease, in spite of intensive treatment and maintenance therapies. Recent evidence suggests that protease-activated receptor-2 (PAR2) is a therapeutic target for glomerulonephritis. In this study, we performed a cell-based high-throughput screening and identified a novel potent PAR2 antagonist, punicalagin (PCG, a major polyphenol enriched in pomegranate), and evaluated the effects of PCG on LN. The effect of PCG on PAR2 inhibition was observed in the human podocyte cell line and its effect on LN was evaluated in NZB/W F1 mice. In the human podocyte cell line, PCG potently inhibited PAR2 (IC50 = 1.5 ± 0.03 µM) and significantly reduced the PAR2-mediated activation of ERK1/2 and NF-κB signaling pathway. In addition, PCG significantly decreased PAR2-induced increases in ICAM-1 and VCAM-1 as well as in IL-8, IFN-γ, and TNF-α expression. Notably, the intraperitoneal administration of PCG significantly alleviated kidney injury and splenomegaly and reduced proteinuria and renal ICAM-1 and VCAM-1 expression in NZB/W F1 mice. Our results suggest that PCG has beneficial effects on LN via inhibition of PAR2, and PCG is a potential therapeutic agent for LN.


Asunto(s)
Taninos Hidrolizables/farmacología , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/metabolismo , Receptor PAR-2/metabolismo , Animales , Línea Celular , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-8/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Endogámicos NZB , Células 3T3 NIH , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Proteinuria/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
18.
Indian J Microbiol ; 60(2): 251-253, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32255858

RESUMEN

It is very important to rapidly detect the contamination of Enterococcus faecalis in fermented foods such as Korean Kimchi to maintain its freshness since Kimchi is exported to all over the world. However, gene sequence of E. faecalis is very similar among various Lactobacillus. So, there have been difficulties in its screening. We have designed primers based on Bile salt hydrolase gene of E. faecalis and applied them to PCR test. PCR band was identified only from E. faecalis and only from the mixture contaminated with E. faecalis. It means that the primers we designed are highly specific for distinguishing contamination of E. faecalis. It will be possible to precisely screen within 1 h, which will greatly contribute to the prevention of food poisoning and quick quarantine.

19.
BMC Microbiol ; 19(1): 193, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429703

RESUMEN

BACKGROUND: More than half of the adult population worldwide is overweight or obese, while excess adiposity has been linked to chronic low-grade inflammation, contributing to the development of chronic diseases. Recent studies have showed that diet-induced alterations to the gut microbiota composition play a pivotal role in the development of obesity. However, the cause-effect relationship between obesity and gut microbiota composition is not yet fully understood. In this study, we investigated the short-term responses of gut microbiota composition to diets with different fat contents and their associations with inflammatory biomarkers. RESULTS: Sixty male C57BL/6 J mice were fed a normal diet (ND; 15% fat) or a high-fat diet (HFD; 45% fat) for 10 or 20 weeks. The relative proportion of the phylum Actinobacteria was elevated by the HFD and was positively associated with body weight and proinflammatory cytokines including TNF-α, IL-1ß, and IL-6. The proportion of the phylum Firmicutes increased with aging and was also positively correlated with proinflammatory cytokines. The proportions of Actinobacteria and Firmicutes were inversely associated with tight junction proteins claudin-1 and E-cadherin, respectively. The proportions of the class Clostridia and the family Ruminococcaceae within the phylum Firmicutes were affected by both diet and age. In addition, the proportions of the phylum Bacteroidetes, the family Bacteroidaceae, and the genus Bacteroides decreased with aging and were inversely correlated with colonic proinflammatory cytokines representing a positive association with tight junction proteins. CONCLUSIONS: Host age and dietary fat intake are important elements that induce proportional changes in gut microbiota, and these changes are also associated with systemic inflammation. This study provides evidence that diet affects the gut microbiota composition within a short period of time.


Asunto(s)
Colon/inmunología , Grasas de la Dieta/metabolismo , Microbioma Gastrointestinal , Obesidad/metabolismo , Obesidad/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colon/microbiología , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inmunología
20.
Metabolomics ; 15(6): 88, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31172328

RESUMEN

INTRODUCTION: The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES: By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS: Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS: HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS: The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/uso terapéutico , Metaboloma/efectos de los fármacos , Obesidad/metabolismo , Péptidos/uso terapéutico , Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Dieta/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA