Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Dis ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557243

RESUMEN

Phytopathogenic Fusarium species causing root and stem rot diseases in susceptible soybean (Glycine max (L.) Merrill) are a major threat to soybean production worldwide. Several Fusarium species have been reported to infect soybean plants in the Republic of Korea, including F. solani, F. oxysporum, F. fujikuroi, and F. graminearum (Cho et al., 2004; Choi et al., 2019; Kang et al., 2020). During the nationwide survey of soybean diseases in 2015, soybean plants showing symptoms of leaf chlorosis, wilting, and shoot death were found in soybean fields in Seosan, Chungnam. Fusarium isolates were obtained from the margins of sterilized necrotic symptomatic and asymptomatic regions of the stem tissues of diseased samples by culturing on potato dextrose agar (PDA). To examine the morphological characteristics, isolates were cultured on PDA at 25°C in the darkness for 10 days. Colonies produced white aerial mycelia with apricot pigments in the medium. Macroconidia were hyaline, slightly curved in shape with 3 or 4 septa, and their average length and width were 34.6± 0.56 µm (31.4 to 37.8 µm) and 4.7±0.16 µm (4.1 to 5.8 µm), respectively (n = 20). Microconidia were elongated, oval with 0 or 1 septum, and their average length and width were 11.4±0.87 and 5.2±0.32 µm, respectively (n = 20). The colonies and conidia exhibited morphological similarities to those of F. falciforme (Xu et al., 2022). Using the primers described by O'Donnell et al. (2008), identity of a representative strain '15-110' was further confirmed by sequencing portions of two genes, the translation elongation factor 1-alpha (EF-1α) and the second largest subunit of RNA polymerase II (RPB2). The two sequences (GenBank accession No. OQ992718 and OR060664) of 15-110 were 99% similar to those of two F. falciforme strains, 21BeanYC6-14 (GenBank accession nos. ON375419 and ON331931), and 21BeanYC6-16 (GenBank accession nos. ON697187 and ON331933). To test the pathogenicity, a single-spore isolate was cultured on carnation leaf agar (CLA) at 25℃ for 10 days. Pathogenicity test was performed by root-cutting assays using 14-day-old soybean seedlings of 'Daewon' and 'Taekwang'. Ten-day-old mycelia of 15-110 were collected from the CLA plates by scraping with distilled water, and the spore suspension was filtered and diluted to 1 × 106 conidia/mL. The roots of the soybean seedlings were partially cut and inoculated by soaking in the diluted spore suspension for two hours. The seedlings were then transplanted into 12 cm plastic pots (11 cm in height) and grown in a growth chamber at 25°C, 14h light/10h dark for 2 weeks. The infected plants exhibited wilting, observed brown discoloration on the root, and eventually died within 2 weeks, whereas the control plants inoculated with sterile water remained healthy. F. falciforme 15-110 was reisolated from infected plants, but not from the uninoculated controls. The morphology of the re-isolated fungus on PDA and its target gene sequences were identical to those of the original colony. To the best of our knowledge, this is the first report of root rot in soybean caused by F. falciforme in the Republic of Korea. Fusarium spp. induce a range of diseases in soybean plants, including root rot, damping-off, and wilt. Given the variable aggressiveness and susceptibility to fungicides among different Fusarium species, it is imperative to identify the Fusarium species posing a threat to soybean production. This understanding is crucial for developing a targeted and tailored disease management strategy to control Fusarium diseases.

2.
Plant Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537140

RESUMEN

Fusarium species are widespread soilborne pathogens that can cause damping-off, root rot, and wilting in soybean [Glycine max (L.) Merrill], subsequently leading to significant yield suppression. Several Fusarium spp. have already been documented for their pathogenicity on soybean plants in the Republic of Korea. The nationwide monitoring of soybean diseases continues to identify new pathogenic Fusarium spp. In 2016, five plant samples at R3-R4 growth stages, showing symptoms of wilting in the upper parts and root rot, were collected in Suwon, Gyeonggi, Republic of Korea. Fungal colonies were obtained from the diseased root samples, with the surface sterilized in 1% sodium hypochlorite for 2 min, rinsed thrice with sterile distilled water, and placed on water agar at 25°C. Five isolates were collected and purified by single-spore isolation. The fungal mycelium was subsequently cultivated on potato dextrose agar for ten days. The isolates produced abundant, aerial, and white mycelium and became purple in old cultures. Macroconidia were slender, falcate to almost straight, usually 3 to 5 septated, and thin-walled. Microconidia were formed in chains from polyphalides, clavate or oval, usually single-celled with a flattened base. These characteristics of isolates were consistent with the description of F. proliferatum (Leslie and Summerrell 2006), and the representative isolate 16-19 was selected for molecular identification to confirm its identity as F. proliferatum. Two evolutionarily conserved genes, the translation elongation factor 1-alpha (EF-1α) and the second-largest subunit of RNA polymerase II (RPB2) genes, were partially amplified using the primers described by O'Donnell et al. (2008), resulting in nucleotide sequences of 680 and 382 base pairs, respectively. These two sequences (GenBank accession numbers: OQ992720 and OR060666) showed 100 and 99.5% identity to the EF-1α and RPB2 of F. proliferatum A40 (GenBank accession numbers: KP964907 and KP964842). For the Petri-dish pathogenicity assay (Broders et al. 2007), five surface-sterilized seeds were placed on water agar media with either sterile water or actively growing '16-19' culture. After 7 days of incubation in a growth chamber (25°C; 12-hour photoperiod), brown lesions were observed on the roots of the inoculated plants, while no symptoms were observed in the sterile water-treated controls. The experiment was conducted three times. For root-cut pathogenicity assay, conidial suspension (1×106 conidia/ml) of the isolate '16-19' was prepared with harvested mycelia cultured on PDA for 10 days with sterile water. The roots of 10-day-old soybean seedlings were partially cut and soaked in either the suspension or sterile water for 2 hours. The seedlings were transplanted into 12 cm plastic pots (11 cm in height) and grew in a greenhouse (26 ± 3°C, 13-h photoperiod). The experiment followed a completely randomized design with three replicates (i.e. three plants in a pot), and it was repeated twice. The inoculated plants began to wilt 7 days after inoculation, while the sterile water-treated controls remained healthy. Ten days after inoculation, all plants were collected, washed under running tap water, and evaluated for the presence and severity of root rot using a 0-4 scale (Chang et al. 2015). The inoculated plants exhibited reduced vigor and developed dark brown lesions on their roots. F. proliferatum was reisolated from symptomatic root tissues of the infected plants, while not from those of the controls. Its colony and spores were morphologically identical to those of the original isolate. F. proliferatum was previously reported as a causative agent of soybean root rot in the United States (Díaz Arias et al. 2011) and Canada (Chang et al. 2015). This is the first report of soybean root rot caused by F. proliferatum in the Republic of Korea. This finding implies that F. proliferatum may potentially threaten soybean production in the Republic of Korea and suggests that effective disease management strategies should be established for soybean protection against the disease, along with continuous surveillance.

3.
J Sci Food Agric ; 95(4): 819-27, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25475360

RESUMEN

BACKGROUND: Tocopherols are crucial lipid-soluble antioxidants and essential nutrients. There is increasing interest in the biofortification of crops with vitamin E for reducing micronutrient malnutrition. However, relatively little is known about the development of soybean cultivars with high levels of tocopherol through combined breeding. RESULT: Tocopherol contents of seeds and germinating seeds of 28 Korean soybean cultivars were analyzed and evaluated for health-promoting activities. Total tocopherol concentrations ranged from 203.9 to 503.1 µg g⁻¹ in seeds and from 20.1 to 230.1 µg g⁻¹ in germinating seeds. The traditional landraces of HaNagari (HN, 503.1 µg g⁻¹), Orialtae (OL, 486.6 µg g⁻¹), SuMoktae (SM, 476.5 µg g⁻¹) and SoRitae (SR, 475.5 µg g⁻¹) showed high levels of tocopherol content. The contents of the four isomers of tocopherol in seeds and germinating seeds were correlated with lipid peroxidation. The γ- and δ-tocopherol contents in seeds were related to 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (0.434; P < 0.01 and 0.373; P < 0.05). CONCLUSION: Total tocopherol content was higher in soybean landraces as compared with modern cultivars developed by cross-breeding. These results suggest that soybean breeding is necessary to increase tocopherol levels.


Asunto(s)
Antioxidantes/análisis , Glycine max/química , Semillas/química , Tocoferoles/análisis , Antioxidantes/metabolismo , Cruzamiento , Cruzamientos Genéticos , Germinación , Humanos , Peroxidación de Lípido , Valor Nutritivo , República de Corea , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Especificidad de la Especie , Tocoferoles/metabolismo , gamma-Tocoferol/análisis , gamma-Tocoferol/metabolismo
4.
BMC Genomics ; 15: 477, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24929792

RESUMEN

BACKGROUND: In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. RESULTS: We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. CONCLUSIONS: We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Glycine max/genética , Secuencia de Bases , Mapeo Cromosómico , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
5.
Plant Physiol ; 162(3): 1420-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23700351

RESUMEN

Legume-Rhizobium spp. symbiosis requires signaling between the symbiotic partners and differential expression of plant genes during nodule development. Previously, we cloned a gene encoding a putative ß-carotene hydroxylase (GmBCH1) from soybean (Glycine max) whose expression increased during nodulation with Bradyrhizobium japonicum. In this work, we extended our study to three GmBCHs to examine their possible role(s) in nodule development, as they were additionally identified as nodule specific, along with the completion of the soybean genome. In situ hybridization revealed the expression of three GmBCHs (GmBCH1, GmBCH2, and GmBCH3) in the infected cells of root nodules, and their enzymatic activities were confirmed by functional assays in Escherichia coli. Localization of GmBCHs by transfecting Arabidopsis (Arabidopsis thaliana) protoplasts with green fluorescent protein fusions and by electron microscopic immunogold detection in soybean nodules indicated that GmBCH2 and GmBCH3 were present in plastids, while GmBCH1 appeared to be cytosolic. RNA interference of the GmBCHs severely impaired nitrogen fixation as well as nodule development. Surprisingly, we failed to detect zeaxanthin, a product of GmBCH, or any other carotenoids in nodules. Therefore, we examined the possibility that most of the carotenoids in nodules are converted or cleaved to other compounds. We detected the expression of some carotenoid cleavage dioxygenases (GmCCDs) in wild-type nodules and also a reduced amount of zeaxanthin in GmCCD8-expressing E. coli, suggesting cleavage of the carotenoid. In view of these findings, we propose that carotenoids such as zeaxanthin synthesized in root nodules are cleaved by GmCCDs, and we discuss the possible roles of the carotenoid cleavage products in nodulation.


Asunto(s)
Glycine max/fisiología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/enzimología , Arabidopsis/genética , Citosol/enzimología , Dioxigenasas/metabolismo , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Fijación del Nitrógeno/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/enzimología , Protoplastos/metabolismo , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Xantófilas/análisis , Zeaxantinas
6.
Planta ; 237(6): 1613-25, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23519921

RESUMEN

Dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintains redox pools of ascorbate (AsA) by recycling oxidized AsA to reduced AsA. To investigate whether DHAR affects rice yield under normal environmental conditions, cDNA-encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants, under the regulation of a maize ubiquitin promoter. Incorporation and expression of the transgene in transgenic rice plants was confirmed by genomic polymerase chain reaction (PCR), semi-quantitative reverse transcription PCR (RT-PCR), western blot, and enzyme activity. The expression levels were at least twofold higher in transgenic (TG) rice plants than in control wild-type (WT) rice plants. In addition, OsDHAR1-overexpression in seven-independent homologous transgenic plants, as compared to WT plants, increased photosynthetic capacity and antioxidant enzyme activities under paddy field conditions, which led to an improved AsA pool and redox homeostasis. Furthermore, OsDHAR1 overexpression significantly improved grain yield and biomass due to the increase of culm and root weights and to enhance panicle and spikelet numbers in the same seven independent TG rice plants during the farming season (2010 and 2011) in South Korea. The OsDHAR protein contained the redox-active site (Cys20), as well as the conserved GSH-binding region, GSH-binding motif, glutathione-S-transferase (GST) N-terminal domain, C-terminal domain interface, and GST C-terminal domain. Therefore, our results indicate that OsDHAR1 overexpression, capable of functioning in AsA recycling, and protein folding increases environmental adaptation to paddy field conditions by the improving AsA pool and redox homeostasis, which enhances rice grain yield and biomass.


Asunto(s)
Biomasa , Citosol/enzimología , Oryza/enzimología , Oryza/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Agricultura , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homeostasis , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Fotosíntesis/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/enzimología , Alineación de Secuencia
7.
Foods ; 12(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38137303

RESUMEN

A low soybean self-sufficiency rate in South Korea has caused a high import dependence and considerable price variation between domestic and foreign soybeans, causing the false labeling of foreign soybeans as domestic. Conventional soybean origin discrimination methods prevent a single-grain analysis and rely on the presence or absence of several compounds or concentration differences. This limits the origin discrimination of mixed samples, demonstrating the need for a method that analyzes individual grains. Therefore, we developed a method for origin discrimination using genetic analysis. The whole-genome sequencing data of the Williams 82 reference cultivar and 15 soybean varieties cultivated in South Korea were analyzed to identify the dense variation blocks (dVBs) with a high single-nucleotide polymorphism density. The PCR primers were prepared and validated for the insertion-deletion (InDel) sequences of the dVBs to discriminate each soybean variety. Our method effectively discriminated domestic and foreign soybean varieties, eliminating their false labeling.

8.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35739975

RESUMEN

Abiotic stress induces reactive oxygen species (ROS) generation in plants, and high ROS levels can cause partial or severe oxidative damage to cellular components that regulate the redox status. Here, we developed salt-tolerant transgenic rice plants that overexpressed the dehydroascorbate reductase gene (OsDHAR1) under the control of a stress-inducible sweet potato promoter (SWPA2). OsDHAR1-expressing transgenic plants exhibited improved environmental adaptability compared to wild-type plants, owing to enhanced ascorbate levels, redox homeostasis, photosynthetic ability, and membrane stability through cross-activation of ascorbate-glutathione cycle enzymes under paddy-field conditions, which enhanced various agronomic traits, including root development, panicle number, spikelet number per panicle, and total grain yield. dhar2-knockdown plants were susceptible to salt stress, and owing to poor seed maturation, exhibited reduced biomass (root growth) and grain yield under paddy field conditions. Microarray revealed that transgenic plants highly expressed genes associated with cell growth, plant growth, leaf senescence, root development, ROS and heavy metal detoxification systems, lipid metabolism, isoflavone and ascorbate recycling, and photosynthesis. We identified the genetic source of functional genomics-based molecular breeding in crop plants and provided new insights into the physiological processes underlying environmental adaptability, which will enable improvement of stress tolerance and crop species productivity in response to climate change.

9.
Plant J ; 61(1): 96-106, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19807881

RESUMEN

Although susceptibility to seed shattering causes severe yield loss during cereal crop harvest, it is an adaptive trait for seed dispersal in wild plants. We previously identified a recessive shattering locus, sh-h, from the rice shattering mutant line Hsh that carries an enhanced abscission layer. Here, we further mapped sh-h to a 34-kb region on chromosome 7 by analyzing 240 F(2) plants and five F(3) lines from the cross between Hsh and Blue&Gundil. Hsh had a point mutation at the 3' splice site of the seventh intron within LOC_Os07g10690, causing a 15-bp deletion of its mRNA as a result of altered splicing. Two transferred DNA (T-DNA) insertion mutants and one point mutant exhibited the enhanced shattering phenotype, confirming that LOC_Os07g10690 is indeed the sh-h gene. RNA interference (RNAi) transgenic lines with suppressed expression of this gene exhibited greater shattering. This gene, which encodes a protein containing a conserved carboxy-terminal domain (CTD) phosphatase domain, was named Oryza sativa CTD phosphatase-like 1 (OsCPL1). Subcellular localization and biochemical analysis revealed that the OsCPL1 protein is a nuclear phosphatase, a common characteristic of metazoan CTD phosphatases involved in cell differentiation. These results demonstrate that OsCPL1 represses differentiation of the abscission layer during panicle development.


Asunto(s)
Oryza/crecimiento & desarrollo , Fosfoproteínas Fosfatasas/fisiología , Proteínas de Plantas/fisiología , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Oryza/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Mutación Puntual/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/genética , Homología de Secuencia de Aminoácido
10.
PLoS One ; 16(6): e0250786, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34081692

RESUMEN

Tartary buckwheat (Fagopyrum tataricum Gartn.) is a highly functional crop that is poised to be the target of many future breeding efforts. The reliable ex situ conservation of various genetic resources is essential for the modern breeding of tartary buckwheat varieties. We developed PCR-based co-dominant insertion/deletion (InDel) markers to discriminate tartary buckwheat genetic resources. First, we obtained the whole genome from 26 accessions across a superscaffold-scale reference genome of 569.37 Mb for tartary buckwheat cv. "Daegwan 3-7." Next, 171,926 homogeneous and 53,755 heterogeneous InDels were detected by comparing 26 accessions with the "Daegwan 3-7" reference sequence. Of these, 100 candidate InDels ranging from 5-20 bp in length were chosen for validation, and 50 of them revealed polymorphisms between the 26 accessions and "Daegwan 3-7." The validated InDels were further tested through the assessment of their likelihood to give rise to a single or a few PCR products in 50 other accessions, covering most tartary buckwheat genome types. The major allele frequencies ranged from 0.5616 at the TB42 locus to 0.9863 at the TB48 locus, with the average PIC value of 0.1532 with a range of 0.0267-0.3712. To create a user-friendly system, the homology of the genotypes between and among the accessions were visualized in both one- (1D) and two-dimensional (2D) barcode types by comparing amplicon polymorphisms with the reference variety, "Daegwan 3-7." A phylogenetic tree and population structure of the 76 accessions according to amplicon polymorphisms for the 50 InDel markers corresponded to those using non-synonymous single nucleotide polymorphism variants, indicating that the barcode system based on the 50 InDels was a useful tool to improve the reliability of identification of tartary buckwheat accessions in the germplasm stocks.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Fagopyrum/clasificación , Fagopyrum/genética , Genoma de Planta/genética , Grano Comestible/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Marcadores Genéticos/genética , Mutación INDEL/genética , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple/genética
11.
BMC Mol Biol ; 10: 91, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19761621

RESUMEN

BACKGROUND: The interaction between a transcription factor and DNA motif (cis-acting element) is an important regulatory step in gene regulation. Comprehensive genome-wide methods have been developed to characterize protein-DNA interactions. Recently, the universal protein binding microarray (PBM) was introduced to determine if a DNA motif interacts with proteins in a genome-wide manner. RESULTS: We facilitated the PBM technology using a DsRed fluorescent protein and a concatenated sequence of oligonucleotides. The PBM was designed in such a way that target probes were synthesized as quadruples of all possible 9-mer combinations, permitting unequivocal interpretation of the cis-acting elements. The complimentary DNA strands of the features were synthesized with a primer and DNA polymerase on microarray slides. Proteins were labeled via N-terminal fusion with DsRed fluorescent protein, which circumvents the need for a multi-step incubation. The PBM presented herein confirmed the well-known DNA binding sequences of Cbf1 and CBF1/DREB1B, and it was also applied to elucidate the unidentified cis-acting element of the OsNAC6 rice transcription factor. CONCLUSION: Our method demonstrated PBM can be conveniently performed by adopting: (1) quadruple 9-mers may increase protein-DNA binding interactions in the microarray, and (2) a one-step incubation shortens the wash and hybridization steps. This technology will facilitate greater understanding of genome-wide interactions between proteins and DNA.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Oligonucleótidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Luminiscentes/genética , Oligonucleótidos/genética , Oryza/química , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica
12.
Planta ; 229(4): 811-21, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19115064

RESUMEN

A leucine-rich repeat receptor-like kinase (LRR-RLK) encoded by one of the genes highly expressed in a specific stage of soybean seed development, referred to as GmLRK1, was identified and characterized. Examination of its kinase domain indicated that GmLRK1 may be a catalytically inactive atypical receptor kinase. An autophosphorylation assay confirmed that GmLRK1 is incapable of autophosphorylation in vitro. However, the phosphorylation of GmRLK1 could be induced after incubation with plant protein extracts, suggesting that some plant proteins may interact with GmLRK1 and phosphorylate the protein in vivo. Analyses of the expression profiles of GmLRK1 and its Arabidopsis ortholog At2g36570 revealed that they may be involved in regulation of more fundamental metabolic and/or developmental pathways, rather than a specialized developmental program such as seed development. Our results further indicate that the GmLRK1 and At2g36570 may play a role in the regulation of certain cellular processes that lead to cell elongation and expansion.


Asunto(s)
Aumento de la Célula , Glycine max/citología , Glycine max/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Soja/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/química , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas de Soja/metabolismo , Glycine max/enzimología
13.
Mol Cells ; 26(6): 616-20, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19011360

RESUMEN

Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.


Asunto(s)
Escherichia coli/metabolismo , Oryza/enzimología , Estrés Oxidativo/genética , Oxidorreductasas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Clonación Molecular , Escherichia coli/genética
14.
Mol Cells ; 24(2): 232-9, 2007 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17978576

RESUMEN

HrpN(EP), from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the hrpN(EP) gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in hrpN(EP)-expressing tobacco differed from that in plants expressing hpaG(Xoo) from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Botrytis/fisiología , Erwinia/genética , Genes Bacterianos , Nicotiana/inmunología , Nicotiana/microbiología , Muerte Celular , Susceptibilidad a Enfermedades , Genes de Plantas , Inmunidad Innata , Patrón de Herencia , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Nicotiana/citología , Nicotiana/genética , Transformación Genética
15.
J Plant Physiol ; 215: 39-47, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28527337

RESUMEN

Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields.


Asunto(s)
Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
16.
Front Plant Sci ; 8: 1696, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056940

RESUMEN

The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album, two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp (C. quinoa) and 152,167 bp (C. album) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 (C. quinoa) and 15 (C. album) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one (C. quinoa) or two (C. album) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium, and Chenopodium koraiense, but not in Chenopodium glaucum. A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions-14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium.

17.
Front Plant Sci ; 8: 520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443113

RESUMEN

For genetic identification of soybean [Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.

18.
PLoS One ; 11(7): e0158841, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27392090

RESUMEN

Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR) can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR). OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA)-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT) cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C). The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1) higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.


Asunto(s)
Expresión Génica , NADH NADPH Oxidorreductasas , Organismos Modificados Genéticamente , Oryza/genética , Proteínas de Plantas , Saccharomyces cerevisiae , Estrés Fisiológico , Etanol/metabolismo , NADH NADPH Oxidorreductasas/biosíntesis , NADH NADPH Oxidorreductasas/genética , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Oryza/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
20.
Sci Rep ; 6: 33903, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27652777

RESUMEN

Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), and complexed with AsA as well as its analogue, isoascorbic acid (ISD). The overall structure of MDHAR is similar to other iron-sulphur protein reductases, except for a unique long loop of 63-80 residues, which seems to be essential in forming the active site pocket. From the structural analysis and structure-guided point mutations, we found that the Arg320 residue plays a major substrate binding role, and the Tyr349 residue mediates electron transfer from NAD(P)H to bound substrate via FAD. The enzymatic activity of MDHAR favours NADH as an electron donor over NADPH. Our results show, for the first time, structural insights into this preference. The MDHAR-ISD complex structure revealed an alternative binding conformation of ISD, compared with the MDHAR-AsA complex. This implies a broad substrate (antioxidant) specificity and resulting greater protective ability of MDHAR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA