Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Annu Rev Cell Dev Biol ; 38: 447-466, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767871

RESUMEN

Organoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.


Asunto(s)
Organoides , Células Madre , Diferenciación Celular
2.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314540

RESUMEN

Organoids have become one of the fastest progressing and applied models in biological and medical research, and various organoids have now been developed for most of the organs of the body. Here, we review the methods developed to generate pancreas organoids in vitro from embryonic, fetal and adult cells, as well as pluripotent stem cells. We discuss how these systems have been used to learn new aspects of pancreas development, regeneration and disease, as well as their limitations and potential for future discoveries.


Asunto(s)
Investigación Biomédica , Células Madre Pluripotentes , Organoides , Organogénesis , Páncreas
3.
Development ; 142(5): 858-70, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25715394

RESUMEN

In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis, and suggest a new candidate gene for syndromes associating kidney dysplasia with pancreatic disorders, including diabetes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factor Nuclear 6 del Hepatocito/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Técnica del Anticuerpo Fluorescente , Genotipo , Factor Nuclear 6 del Hepatocito/genética , Etiquetado Corte-Fin in Situ , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Células Madre/citología , Células Madre/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
4.
PLoS Biol ; 13(3): e1002111, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25786211

RESUMEN

Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of ß-cells in vitro.


Asunto(s)
Células Acinares/citología , Ciclo Celular/genética , Linaje de la Célula/genética , Células Secretoras de Insulina/citología , Células Madre/citología , Células Acinares/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proliferación Celular , Rastreo Celular , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Procesamiento de Imagen Asistido por Computador , Células Secretoras de Insulina/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organogénesis/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Técnicas de Cultivo de Tejidos , Transactivadores/genética , Transactivadores/metabolismo , Proteína Fluorescente Roja
5.
Development ; 141(5): 1120-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550118

RESUMEN

Coordinated arterial-venous differentiation is crucial for vascular development and function. The origin of the cardinal vein (CV) in mammals is unknown, while conflicting theories have been reported in chick and zebrafish. Here, we provide the first molecular characterization of endothelial cells (ECs) expressing venous molecular markers, or venous-fated ECs, within the emergent dorsal aorta (DA). These ECs, expressing the venous molecular markers Coup-TFII and EphB4, cohabited the early DA with ECs expressing the arterial molecular markers ephrin B2, Notch and connexin 40. These mixed ECs in the early DA expressed either the arterial or venous molecular marker, but rarely both. Subsequently, the DA exhibited uniform arterial markers. Real-time imaging of mouse embryos revealed EC movement from the DA to the CV during the stage when venous-fated ECs occupied the DA. We analyzed mutants for EphB4, which encodes a receptor tyrosine kinase for the ephrin B2 ligand, as we hypothesized that ephrin B2/EphB4 signaling may mediate the repulsion of venous-fated ECs from the DA to the CV. Using an EC quantification approach, we discovered that venous-fated ECs increased in the DA and decreased in the CV in the mutants, whereas the rest of the ECs in each vessel were unaffected. This result suggests that the venous-fated ECs were retained in the DA and missing in the CV in the EphB4 mutant, and thus that ephrin B2/EphB4 signaling normally functions to clear venous-fated ECs from the DA to the CV by cell repulsion. Therefore, our cellular and molecular evidence suggests that the DA harbors venous progenitors that move to participate in CV formation, and that ephrin B2/EphB4 signaling regulates this aortic contribution to the mammalian CV.


Asunto(s)
Aorta/citología , Células Madre/citología , Venas/citología , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Células Madre/metabolismo
6.
Dev Biol ; 405(2): 316-27, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26156633

RESUMEN

To contribute to devise successful beta-cell differentiation strategies for the cure of Type 1 diabetes we sought to uncover barriers that restrict endocrine fate acquisition by studying the role of the transcriptional repressor REST in the developing pancreas. Rest expression is prevented in neurons and in endocrine cells, which is necessary for their normal function. During development, REST represses a subset of genes in the neuronal differentiation program and Rest is down-regulated as neurons differentiate. Here, we investigate the role of REST in the differentiation of pancreatic endocrine cells, which are molecularly close to neurons. We show that Rest is widely expressed in pancreas progenitors and that it is down-regulated in differentiated endocrine cells. Sustained expression of REST in Pdx1(+) progenitors impairs the differentiation of endocrine-committed Neurog3(+) progenitors, decreases beta and alpha cell mass by E18.5, and triggers diabetes in adulthood. Conditional inactivation of Rest in Pdx1(+) progenitors is not sufficient to trigger endocrine differentiation but up-regulates a subset of differentiation genes. Our results show that the transcriptional repressor REST is active in pancreas progenitors where it gates the activation of part of the beta cell differentiation program.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Páncreas/metabolismo , Proteínas Represoras/fisiología , Animales , Glucemia/metabolismo , Regulación hacia Abajo , Células Endocrinas/citología , Células Endocrinas/metabolismo , Sistema Endocrino/metabolismo , Eliminación de Gen , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Páncreas/embriología , Células Madre/citología , Transactivadores/metabolismo , Transgenes
8.
Dev Cell ; 58(21): 2292-2308.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37591246

RESUMEN

Basic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet information on their dynamics is limited, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. By monitoring both NEUROG3 gene expression and protein in single cells using a knockin dual reporter in 2D and 3D models of human pancreas development, we show an approximately 2-fold slower expression of human NEUROG3 than that of the mouse. We observe heterogeneous peak levels of NEUROG3 expression and reveal through long-term live imaging that both low and high NEUROG3 peak levels can trigger differentiation into hormone-expressing cells. Based on fluorescence intensity, we statistically integrate single-cell transcriptome with dynamic behaviors of live cells and propose a data-mapping methodology applicable to other contexts. Using this methodology, we identify a role for KLK12 in motility at the onset of NEUROG3 expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Tejido Nervioso , Humanos , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/metabolismo , Diferenciación Celular/genética , Sistema Endocrino/metabolismo
9.
Dev Dyn ; 240(3): 589-604, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287656

RESUMEN

During development, pancreatic endocrine cells are specified within the pancreatic epithelium. They subsequently delaminate out of the epithelium and cluster in the mesenchyme to form the islets of Langerhans. Neurogenin3 (Ngn3) is a transcription factor required for the differentiation of all endocrine cells and we investigated its role in their delamination. We observed in the mouse pancreas that most Ngn3-positive cells have lost contact with the lumen of the epithelium, showing that the delamination from the progenitor layer is initiated in endocrine progenitors. Subsequently, in both mouse and chick newly born endocrine cells at the periphery of the epithelium strongly decrease E-cadherin, break-down the basal lamina and cluster into islets of Langerhans. Repression of E-cadherin is sufficient to promote delamination from the epithelium. We further demonstrate that Ngn3 indirectly controls Snail2 protein expression post-transcriptionally to repress E-cadherin. In the chick embryo, Ngn3 independently controls epithelium delamination and differentiation programs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Secretoras de Insulina/citología , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Páncreas/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cadherinas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Embrión de Pollo , Pollos , Electroporación , Femenino , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Islotes Pancreáticos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Páncreas/metabolismo , Embarazo
10.
Stem Cell Reports ; 17(5): 1215-1228, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452596

RESUMEN

With the aim of producing ß cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to ß cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to ß cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive ß cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production.


Asunto(s)
Células Secretoras de Insulina , Células Madre Pluripotentes , Diferenciación Celular , Fibronectinas/farmacología , Humanos , Páncreas , Polímeros
11.
J Cell Biol ; 172(1): 151-62, 2006 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-16391003

RESUMEN

Morphogenesis of a vascular network requires dynamic vessel growth and regression. To investigate the cellular mechanism underlying this process, we deleted focal adhesion kinase (FAK), a key signaling mediator, in endothelial cells (ECs) using Tie2-Cre mice. Targeted FAK depletion occurred efficiently early in development, where mutants exhibited a distinctive and irregular vasculature, resulting in hemorrhage and lethality between embryonic day (e) 10.5 and 11.5. Capillaries and intercapillary spaces in yolk sacs were dilated before any other detectable abnormalities at e9.5, and explants demonstrate that the defects resulted from the loss of FAK and not from organ failure. Time-lapse microscopy monitoring EC behavior during vascular formation in explants revealed no apparent decrease in proliferation or migration but revealed increases in cell retraction and death leading to reduced vessel growth and increased vessel regression. Consistent with this phenotype, ECs derived from mutant embryos exhibited aberrant lamellipodial extensions, altered actin cytoskeleton, and nonpolarized cell movement. This study reveals that FAK is crucial for vascular morphogenesis and the regulation of EC survival and morphology.


Asunto(s)
Vasos Sanguíneos/anomalías , Anomalías Cardiovasculares/enzimología , Anomalías Cardiovasculares/genética , Endotelio Vascular/enzimología , Quinasa 1 de Adhesión Focal/deficiencia , Seudópodos/genética , Animales , Vasos Sanguíneos/patología , Capilares/anomalías , Capilares/patología , Anomalías Cardiovasculares/patología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/patología , Endotelio Vascular/patología , Quinasa 1 de Adhesión Focal/genética , Integrasas/genética , Ratones , Ratones Transgénicos , Mutación , Neovascularización Fisiológica/genética , Seudópodos/patología , Receptor TIE-2/genética
12.
J Mol Med (Berl) ; 99(4): 449-462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221939

RESUMEN

Organoids constitute biological systems which are used to model organ development, homeostasis, regeneration, and disease in vitro and hold promise for use in therapy. Reflecting in vivo development, organoids form from tissue cells or pluripotent stem cells. Cues provided from the media and individual cells promote self-organization of these uniform starting cells into a structure, with emergent differentiated cells, morphology, and often functionality that resemble the tissue of origin. Therefore, organoids provide a complement to two-dimensional in vitro culture and in vivo animal models of development, providing the experimental control and flexibility of in vitro methods with the three-dimensional context of in vivo models, with fewer ethical restraints than human or animal work. However, using organoids, we are only just beginning to understand on the cellular level how the external conditions and signaling between individual cells promote the emergence of cells and structures. In this review, we focus specifically on organoids derived from endodermal tissues: the starting conditions of the cells, signaling mechanisms, and external media that allow the emergence of higher order self-organization.


Asunto(s)
Endodermo/citología , Organoides/citología , Células Madre Adultas/citología , Animales , Comunicación Celular , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Retroalimentación Fisiológica , Humanos , Células Madre Pluripotentes Inducidas/citología , Intestinos/citología , Ratones , Morfogénesis , Especificidad de Órganos , Organogénesis , Organoides/ultraestructura , Transducción de Señal
13.
Nat Commun ; 12(1): 3144, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035279

RESUMEN

Human organogenesis remains relatively unexplored for ethical and practical reasons. Here, we report the establishment of a single-cell transcriptome atlas of the human fetal pancreas between 7 and 10 post-conceptional weeks of development. To interrogate cell-cell interactions, we describe InterCom, an R-Package we developed for identifying receptor-ligand pairs and their downstream effects. We further report the establishment of a human pancreas culture system starting from fetal tissue or human pluripotent stem cells, enabling the long-term maintenance of pancreas progenitors in a minimal, defined medium in three-dimensions. Benchmarking the cells produced in 2-dimensions and those expanded in 3-dimensions to fetal tissue identifies that progenitors expanded in 3-dimensions are transcriptionally closer to the fetal pancreas. We further demonstrate the potential of this system as a screening platform and identify the importance of the EGF and FGF pathways controlling human pancreas progenitor expansion.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organogénesis , Páncreas/embriología , Células Madre Pluripotentes/fisiología , Técnicas de Cultivo de Tejidos/métodos , Feto Abortado , Animales , Comunicación Celular , Diferenciación Celular , Línea Celular , Conjuntos de Datos como Asunto , Embrión de Mamíferos , Factor de Crecimiento Epidérmico/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Páncreas/citología , RNA-Seq , Transducción de Señal/fisiología , Análisis de la Célula Individual , Esferoides Celulares , Transcriptoma
14.
Curr Top Dev Biol ; 129: 143-190, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29801529

RESUMEN

Here, we review how human pluripotent stem cell models of pancreas development have emerged and became an important tool to study human development and disease. Initially developed toward the production of ß cells for diabetes therapy, the protocols have been refined based on knowledge of pancreas development in model organisms. While the cells produced are closer and closer to the end goal of a functional ß cell, these models have also been used to carry out functional experiments addressing gene function and expression as well as regulatory and epigenetic landscape changes during human pancreas development. They thereby complement model organisms and reports from human genetic variants predisposing to different forms of diabetes, as well as observations on human fetal tissue. In this review, we therefore compare these different sources of information and discuss how human stem cell models are evolving to inform us on pancreatic diseases and possible treatments.


Asunto(s)
Páncreas/embriología , Células Madre Pluripotentes/citología , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Endodermo/embriología , Humanos , Páncreas/citología
15.
Nat Commun ; 8(1): 605, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928395

RESUMEN

Spatiotemporal balancing of cellular proliferation and differentiation is crucial for postnatal tissue homoeostasis and organogenesis. During embryonic development, pancreatic progenitors simultaneously proliferate and differentiate into the endocrine, ductal and acinar lineages. Using in vivo clonal analysis in the founder population of the pancreas here we reveal highly heterogeneous contribution of single progenitors to organ formation. While some progenitors are bona fide multipotent and contribute progeny to all major pancreatic cell lineages, we also identify numerous unipotent endocrine and ducto-endocrine bipotent clones. Single-cell transcriptional profiling at E9.5 reveals that endocrine-committed cells are molecularly distinct, whereas multipotent and bipotent progenitors do not exhibit different expression profiles. Clone size and composition support a probabilistic model of cell fate allocation and in silico simulations predict a transient wave of acinar differentiation around E11.5, while endocrine differentiation is proportionally decreased. Increased proliferative capacity of outer progenitors is further proposed to impact clonal expansion.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Organogénesis , Páncreas/embriología , Células Acinares , Animales , Simulación por Computador , Perfilación de la Expresión Génica , Ratones , Análisis de la Célula Individual
16.
Development ; 135(22): 3755-64, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18952909

RESUMEN

A mutual coordination of size between developing arteries and veins is essential for establishing proper connections between these vessels and, ultimately, a functional vasculature; however, the cellular and molecular regulation of this parity is not understood. Here, we demonstrate that the size of the developing dorsal aorta and cardinal vein is reciprocally balanced. Mouse embryos carrying gain-of-function Notch alleles show enlarged aortae and underdeveloped cardinal veins, whereas those with loss-of-function mutations show small aortae and large cardinal veins. Notch does not affect the overall number of endothelial cells but balances the proportion of arterial to venous endothelial cells, thereby modulating the relative sizes of both vessel types. Loss of ephrin B2 or its receptor EphB4 also leads to enlarged aortae and underdeveloped cardinal veins; however, endothelial cells with venous identity are mislocalized in the aorta, suggesting that ephrin B2/EphB4 signaling functions distinctly from Notch by sorting arterial and venous endothelial cells into their respective vessels. Our findings provide mechanistic insight into the processes underlying artery and vein size equilibration during angiogenesis.


Asunto(s)
Arterias/metabolismo , Efrina-B2/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas/metabolismo , Receptor EphB4/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Venas/metabolismo , Animales , Arterias/anatomía & histología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Efrina-B2/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas/genética , Receptor EphB4/genética , Receptor Notch1/deficiencia , Receptor Notch1/genética , Receptor Notch4 , Receptores Notch/genética , Venas/anatomía & histología
17.
Development ; 135(12): 2193-202, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18480158

RESUMEN

beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Endoteliales/fisiología , Integrina beta1/fisiología , Neovascularización Fisiológica/fisiología , Animales , Supervivencia Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Separación Inmunomagnética , Integrina beta1/genética , Ratones , Ratones Transgénicos , Modelos Cardiovasculares
18.
Biochemistry ; 41(47): 14076-84, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12437365

RESUMEN

Crystallins, the major structural proteins in the lens of the eye, are maintained with little turnover throughout the lifetime of the host. With time, lens crystallins undergo post-translational modifications that may play an important role in loss of vision during aging and cataract formation. Specific modifications include deamidation and truncation. Urea-induced denaturation was studied for recombinantly expressed wild-type betaB1 (WT), the deamidated mutant (Q204E), an N-terminally truncated mutant (betaB1(DeltaN41)), and other truncated versions of these proteins generated by calpain II digestion. Tryptophan fluorescence was used to monitor loss of global tertiary structure. Loss of secondary structure was followed by circular dichroism, and electron paramagnetic resonance site-directed spin labeling was used to monitor loss of tertiary structure selectively in the N-terminal domain. Our results indicated that the deamidated mutant was significantly destabilized relative to WT. Q204E showed a two-step denaturation curve with transitions at 4.1 and 7.2 M urea, whereas denaturation of WT occurred in a cooperative single step with a transition midpoint of 5.9 M urea. Unfolding of WT was completely reversible, whereas Q204E failed to fully refold. Prolonged incubation under denaturing conditions led to aggregation, which was also more pronounced for Q204E dimers than for WT. Truncation of 41 residues from the N-terminus or 47 and 5 residues from the N- and C-termini did not affect stability. These studies indicated that a single-site deamidation could significantly diminish the stability of lens betaB1-crystallin, supporting the idea that such modifications may play an important role in age-related cataract formation.


Asunto(s)
Cristalinas/química , Sustitución de Aminoácidos , Dicroismo Circular , Clonación Molecular , Cristalinas/genética , Cristalinas/metabolismo , Estabilidad de Medicamentos , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Cristalino/química , Cristalino/fisiología , Mutagénesis Sitio-Dirigida , Conformación Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Eliminación de Secuencia , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA