Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916275

RESUMEN

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Asunto(s)
Artemisininas/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores de GABA-A/metabolismo , Transducción de Señal , Animales , Arteméter , Artemisininas/administración & dosificación , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Estabilidad Proteica/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
2.
Development ; 145(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29386244

RESUMEN

The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering.


Asunto(s)
Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Animales Modificados Genéticamente , Agregación Celular , Movimiento Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Islotes Pancreáticos/citología , Queratina-18/genética , Queratina-18/metabolismo , Organogénesis , Inhibidores de las Quinasa Fosfoinosítidos-3 , Seudópodos/metabolismo , Seudópodos/ultraestructura , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/metabolismo
3.
BMC Biol ; 17(1): 61, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362746

RESUMEN

BACKGROUND: FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression. RESULTS: We identify the conserved microRNA-430 family (miR-430) as a novel target of FoxH1. miR-430 levels are increased in foxH1 mutants, resulting in a reduced expression of transcripts that are targeted by miR-430 for degradation. To determine the underlying mechanism of miR-430 repression, we performed chromatin immunoprecipitation studies and overexpression experiments with mutant as well as constitutive active and repressive forms of FoxH1. Our studies reveal a molecular interaction of FoxH1 with miR-430 loci independent of the FHD. Furthermore, we show that previously described mutant forms of FoxH1 that disrupt DNA binding or that lack the C-terminal Smad Interaction Domain (SID) dominantly interfere with miR-430 repression, but not with the regulation of previously described FoxH1 targets. CONCLUSIONS: We were able to identify the distinct roles of protein domains of FoxH1 in the regulation process of miR-430. We provide evidence that the indirect repression of miR-430 loci depends on the connection to a distal repressive chromosome environment via a non-canonical mode. The widespread distribution of such non-canonical binding sites of FoxH1, found not only in our study, argues against a function restricted to regulating miR-430 and for a more global role of FoxH1 in chromatin folding.


Asunto(s)
Desarrollo Embrionario/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
Zebrafish ; 21(2): 128-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621212

RESUMEN

Coordinated signaling pathway activity directs early patterning to set up the vertebrate body plan. Perturbations in the timing or location of signal molecule expression impacts embryo morphology and organ formation. In this study, we present a laboratory course to use zebrafish for studying the role of Wnt signaling in specifying the early embryonic axes. Students are exposed to basic techniques in molecular and developmental biology, including embryo manipulation, fluorescence microscopy, image processing, and data analysis. Furthermore, this course incorporates student-designed experiments to stimulate independent inquiry and improve scientific learning, providing an experience resembling graduate-level laboratory research. Students appreciated following vertebrate development in real-time, and principles of embryogenesis were reinforced by observing the morphological changes that arise due to signaling alterations. Scientific and research skills were enhanced through practice in experimental design, interpretation, and presentation.


Asunto(s)
Vía de Señalización Wnt , Pez Cebra , Humanos , Animales , Pez Cebra/genética , Tipificación del Cuerpo , Desarrollo Embrionario , Proteínas de Pez Cebra/metabolismo , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo
5.
FEBS Lett ; 597(2): 262-275, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36217213

RESUMEN

Mitochondria, organelles critical for energy production, modify their shape and location in response to developmental state and metabolic demands. Mitochondria are altered in diabetes, but the mechanistic basis is poorly defined, due to difficulties in assessing mitochondria within an intact organism. Here, we use in vivo imaging in transparent zebrafish larvae to demonstrate filamentous, interconnected mitochondrial networks within islet cells. Mitochondrial movements highly resemble what has been reported for human islet cells in vitro, showing conservation in behaviour across species and cellular context. During islet development, mitochondrial content increases with emergence of cell motility, and mitochondria disperse within fine protrusions. Overall, this work presents quantitative analysis of mitochondria within their native environment and provides insights into mitochondrial behaviour during organogenesis.


Asunto(s)
Mitocondrias , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Larva , Mitocondrias/metabolismo , Morfogénesis , Movimiento Celular
6.
BMC Biol ; 9: 75, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22034951

RESUMEN

BACKGROUND: Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. RESULTS: To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. CONCLUSIONS: The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development.


Asunto(s)
Tipificación del Cuerpo , Sistema Endocrino/embriología , Sistema Endocrino/patología , Proteínas de Homeodominio/metabolismo , Células Madre/patología , Transactivadores/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Sistema Endocrino/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Ratones , Mitosis/efectos de los fármacos , Modelos Biológicos , Morfolinos/farmacología , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
7.
Cells ; 10(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831487

RESUMEN

Diabetic retinopathy is a frequent complication of longstanding diabetes, which comprises a complex interplay of microvascular abnormalities and neurodegeneration. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 display a diabetic phenotype with survival into adulthood, and are therefore uniquely suitable among zebrafish models for studying pathologies associated with persistent diabetic conditions. We have previously shown that, starting at three months of age, pdx1 mutants exhibit not only vascular but also neuro-retinal pathologies manifesting as photoreceptor dysfunction and loss, similar to human diabetic retinopathy. Here, we further characterize injury and regenerative responses and examine the effects on progenitor cell populations. Consistent with a negative impact of hyperglycemia on neurogenesis, stem cells of the ciliary marginal zone show an exacerbation of aging-related proliferative decline. In contrast to the robust Müller glial cell proliferation seen following acute retinal injury, the pdx1 mutant shows replenishment of both rod and cone photoreceptors from slow-cycling, neurod-expressing progenitors which first accumulate in the inner nuclear layer. Overall, we demonstrate a diabetic retinopathy model which shows pathological features of the human disease evolving alongside an ongoing restorative process that replaces lost photoreceptors, at the same time suggesting an unappreciated phenotypic continuum between multipotent and photoreceptor-committed progenitors.


Asunto(s)
Hiperglucemia/patología , Células-Madre Neurales/patología , Retina/patología , Envejecimiento/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular , Proliferación Celular , Enfermedad Crónica , Células Ependimogliales/patología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX6/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Receptores Notch/metabolismo , Retina/inmunología , Transducción de Señal , Transactivadores/genética , Pez Cebra
8.
Front Cell Dev Biol ; 8: 586651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102488

RESUMEN

Pancreatic islets, discrete microorgans embedded within the exocrine pancreas, contain beta cells which are critical for glucose homeostasis. Loss or dysfunction of beta cells leads to diabetes, a disease with expanding global prevalence, and for which regenerative therapies are actively being pursued. Recent efforts have focused on producing mature beta cells in vitro, but it is increasingly recognized that achieving a faithful three-dimensional islet structure is crucial for generating fully functional beta cells. Our current understanding of islet morphogenesis is far from complete, due to the deep internal location of the pancreas in mammalian models, which hampers direct visualization. Zebrafish is a model system well suited for studies of pancreas morphogenesis due to its transparency and the accessible location of the larval pancreas. In order to further clarify the cellular mechanisms of islet formation, we have developed new tools for in vivo visualization of single-cell dynamics. Our results show that clustering islet cells make contact and interconnect through dynamic actin-rich processes, move together while remaining in close proximity to the duct, and maintain high protrusive motility after forming clusters. Quantitative analyses of cell morphology and motility in 3-dimensions lays the groundwork to define therapeutically applicable factors responsible for orchestrating the morphogenic behaviors of coalescing endocrine cells.

9.
Invest Ophthalmol Vis Sci ; 61(2): 43, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32106290

RESUMEN

Purpose: Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR. Methods: Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography. Results: Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness. Conclusions: This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.


Asunto(s)
Retinopatía Diabética/patología , Células Fotorreceptoras/patología , Degeneración Retiniana/patología , Vasos Retinianos/patología , Análisis de Varianza , Animales , Diabetes Mellitus Experimental , Retinopatía Diabética/fisiopatología , Electrorretinografía , Degeneración Retiniana/fisiopatología , Vasos Retinianos/fisiopatología , Pez Cebra
10.
Sci Rep ; 5: 14241, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384018

RESUMEN

Diabetes mellitus is characterized by disrupted glucose homeostasis due to loss or dysfunction of insulin-producing beta cells. In this work, we characterize pancreatic islet development and function in zebrafish mutant for pdx1, a gene which in humans is linked to genetic forms of diabetes and is associated with increased susceptibility to Type 2 diabetes. Pdx1 mutant zebrafish have the key diabetic features of reduced beta cells, decreased insulin and elevated glucose. The hyperglycemia responds to pharmacologic anti-diabetic treatment and, as often seen in mammalian diabetes models, beta cells of pdx1 mutants show sensitivity to nutrient overload. This unique genetic model of diabetes provides a new tool for elucidating the mechanisms behind hyperglycemic pathologies and will allow the testing of novel therapeutic interventions in a model organism that is amenable to high-throughput approaches.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Proteínas de Homeodominio/genética , Hipoglucemiantes/farmacología , Mutación , Transactivadores/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Tamaño Corporal , Supervivencia Celular/genética , Codón sin Sentido , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Genotipo , Glucosa/metabolismo , Proteínas de Homeodominio/química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Datos de Secuencia Molecular , Alineación de Secuencia , Transactivadores/química , Pez Cebra
11.
Methods Cell Biol ; 100: 261-80, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21111221

RESUMEN

The pancreas is a vertebrate-specific organ of endodermal origin which is responsible for production of digestive enzymes and hormones involved in regulating glucose homeostasis, in particular insulin, deficiency of which results in diabetes. Basic research on the genetic and molecular pathways regulating pancreas formation and function has gained major importance for the development of regenerative medical approaches aimed at improving diabetes treatment. Among the different model organisms that are currently used to elucidate the basic pathways of pancreas development and regeneration, the zebrafish is distinguished by its unique opportunities to combine genetic and pharmacological approaches with sophisticated live-imaging methodology, and by its ability to regenerate the pancreas within a short time. Here we review current perspectives and present methods for studying two important processes contributing to pancreas development and regeneration, namely cell migration via time-lapse micropscopy and cell proliferation via incorporation of nucleotide analog EdU, with a focus on the insulin-producing beta cells of the islet.


Asunto(s)
Páncreas/embriología , Páncreas/fisiología , Pez Cebra/embriología , Animales , Proliferación Celular , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Páncreas/citología , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA