RESUMEN
BACKGROUND: In patient care, data are historically generated and stored in heterogeneous databases that are domain specific and often noninteroperable or isolated. As the amount of health data increases, the number of isolated data silos is also expected to grow, limiting the accessibility of the collected data. Medical informatics is developing ways to move from siloed data to a more harmonized arrangement in information architectures. This paradigm shift will allow future research to integrate medical data at various levels and from various sources. Currently, comprehensive requirements engineering is working on data integration projects in both patient care- and research-oriented contexts, and it is significantly contributing to the success of such projects. In addition to various stakeholder-based methods, document-based requirement elicitation is a valid method for improving the scope and quality of requirements. OBJECTIVE: Our main objective was to provide a general catalog of functional requirements for integrating medical data into knowledge management environments. We aimed to identify where integration projects intersect to derive consistent and representative functional requirements from the literature. On the basis of these findings, we identified which functional requirements for data integration exist in the literature and thus provide a general catalog of requirements. METHODS: This work began by conducting a literature-based requirement elicitation based on a broad requirement engineering approach. Thus, in the first step, we performed a web-based systematic literature review to identify published articles that dealt with the requirements for medical data integration. We identified and analyzed the available literature by applying the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In the second step, we screened the results for functional requirements using the requirements engineering method of document analysis and derived the requirements into a uniform requirement syntax. Finally, we classified the elicited requirements into a category scheme that represents the data life cycle. RESULTS: Our 2-step requirements elicitation approach yielded 821 articles, of which 61 (7.4%) were included in the requirement elicitation process. There, we identified 220 requirements, which were covered by 314 references. We assigned the requirements to different data life cycle categories as follows: 25% (55/220) to data acquisition, 35.9% (79/220) to data processing, 12.7% (28/220) to data storage, 9.1% (20/220) to data analysis, 6.4% (14/220) to metadata management, 2.3% (5/220) to data lineage, 3.2% (7/220) to data traceability, and 5.5% (12/220) to data security. CONCLUSIONS: The aim of this study was to present a cross-section of functional data integration-related requirements defined in the literature by other researchers. The aim was achieved with 220 distinct requirements from 61 publications. We concluded that scientific publications are, in principle, a reliable source of information for functional requirements with respect to medical data integration. Finally, we provide a broad catalog to support other scientists in the requirement elicitation phase.
Asunto(s)
Gestión del Conocimiento , Publicaciones , Humanos , Recolección de Datos , Análisis de Sistemas , Almacenamiento y Recuperación de la InformaciónRESUMEN
Imaging techniques are a cornerstone of today's medicine and can be crucial for a successful therapy. But in addition, the generated imaging series are an important resource for new informatics' methods, especially in the field of artificial intelligence. This paper describes the success of integrating clinical routine imaging data into a standardized format for research purposes. Thus, we designed an integration flow and successfully implemented it in the local data integration center of University Hospital Schleswig-Holstein. The flow integrates imaging series and radiological reports from the primary system into an openEHR repository with enrichment by semantic codes for better findability and retrieval using HL7 FHIR. As a result, 6.6 million radiological studies with 29 million image series are now available for further medical (informatics) research.
Asunto(s)
Inteligencia Artificial , Medicina , Humanos , Hospitales Universitarios , SemánticaRESUMEN
This paper explores the challenges and lessons learned during the mapping of HL7 v2 messages structured using custom schema to openEHR for the Medical Data Integration Center (MeDIC) of the University Hospital, Schleswig-Holstein (UKSH). Missing timestamps in observations, missing units of measurement, inconsistencies in decimal separators and unexpected datatypes were identified as critical inconsistencies in this process. These anomalies highlight the difficulty of automating the transformation of HL7 v2 data to any standard, particularly openEHR, using off-the-shelf tools. Addressing these anomalies is crucial for enhancing data interoperability, supporting evidence-based research, and optimizing clinical decision-making. Implementing proper data quality measures and governance will unlock the potential of integrated clinical data, empowering clinicians and researchers and fostering a robust healthcare ecosystem.
Asunto(s)
Estándar HL7 , Registros Electrónicos de Salud , Interoperabilidad de la Información en Salud , Alemania , Integración de Sistemas , Humanos , Registro Médico Coordinado/métodosRESUMEN
This comparative study examines the transition from isolated registries to a consolidated data-centric approach at University Hospital Schleswig-Holstein, focusing on migrating the Atrioventricular Valve Intervention Registry (AVIR) from REDCap to a Medical Data Integration Center based openEHR registry. Through qualitative analysis, we identify key disparities and strategic decisions guiding this transition. While REDCap has historical utility, its limitations in automated data integration and traceability highlight the advantages of a data-centric approach, which include streamlined data (integration) management at a single-point-of-truth based on e.g., centralized consent management. Our findings lay the groundwork for the AVIR project and a proof-of-concept data-centric registry, reflecting a broader industry trend towards data-centric healthcare initiatives.
Asunto(s)
Sistema de Registros , Humanos , Registros Electrónicos de Salud , Alemania , Enfermedades de las Válvulas CardíacasRESUMEN
BACKGROUND: New sensor technologies in wearables and other consumer health devices open up promising opportunities to collect real-world data. As cardiovascular diseases remain the number one reason for disease and mortality worldwide, cardiology offers potent monitoring use cases with patients in their out-of-hospital daily routines. Therefore, the aim of this systematic review is to investigate the status quo of studies monitoring patients with cardiovascular risks and patients suffering from cardiovascular diseases in a telemedical setting using not only a smartphone-based app, but also consumer health devices such as wearables and other sensor-based devices. METHODS: A literature search was conducted across five databases, and the results were examined according to the study protocols, technical approaches, and qualitative and quantitative parameters measured. RESULTS: Out of 166 articles, 8 studies were included in this systematic review; these cover interventional and observational monitoring approaches in the area of cardiovascular diseases, heart failure, and atrial fibrillation using various app, wearable, and health device combinations. CONCLUSIONS: Depending on the researcher's motivation, a fusion of apps, patient-reported outcome measures, and non-invasive sensors can be orchestrated in a meaningful way, adding major contributions to monitoring concepts for both individual patients and larger cohorts.