Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 436(7047): 62-5, 2005 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16001062

RESUMEN

The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from Mössbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.


Asunto(s)
Atmósfera/química , Polvo/análisis , Medio Ambiente Extraterrestre/química , Marte , Clima Desértico , Compuestos Férricos/análisis , Óxido Ferrosoférrico , Hierro/análisis , Compuestos de Hierro/análisis , Compuestos de Magnesio/análisis , Magnetismo , Óxidos/análisis , Silicatos/análisis , Espectrometría por Rayos X , Espectroscopía de Mossbauer , Agua/análisis
2.
Earth Space Sci ; 2(5): 144-172, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-27981072

RESUMEN

The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA