Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 91(8): 5051-5057, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30893554

RESUMEN

Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, without the need of preconcentrating the melted ice, for the determination of a series of novel biomarkers in ice core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterized by limits of detection (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOAs) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in the preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies.


Asunto(s)
Biomarcadores/análisis , Cromatografía Líquida de Alta Presión/métodos , Monitoreo del Ambiente/métodos , Hielo , Límite de Detección , Espectrometría de Masas/métodos , Océanos y Mares
2.
Nat Commun ; 15(1): 1735, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443398

RESUMEN

Ice core records of carbon dioxide (CO2) throughout the last 2000 years provide context for the unprecedented anthropogenic rise in atmospheric CO2 and insights into global carbon cycle dynamics. Yet the atmospheric history of CO2 remains uncertain in some time intervals. Here we present measurements of CO2 and methane (CH4) in the Skytrain ice core from 1450 to 1700 CE. Results suggest a sudden decrease in CO2 around 1610 CE in one widely used record may be an artefact of a small number of anomalously low values. Our analysis supports a more gradual decrease in CO2 of 0.5 ppm per decade from 1516 to 1670 CE, with an inferred land carbon sink of 2.6 PgC per decade. This corroborates modelled scenarios of large-scale reorganisation of land use in the Americas following New World-Old World contact, whereas a rapid decrease in CO2 at 1610 CE is incompatible with even the most extreme land-use change scenarios.

3.
Talanta ; 194: 233-242, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609525

RESUMEN

The majority of atmospheric compounds measured in ice cores are inorganic, while analysis of their organic counterparts is a less well developed field. In recent years, understanding of formation, transport pathways and preservation of these compounds in ice and snow has improved, showing great potential for their use as biomarkers in ice cores. This study presents an optimised analytical technique for quantification of terrestrial and marine biosphere emissions of secondary organic aerosol (SOA) components and fatty acids in ice using HPLC-MS analysis. Concentrations of organic compounds in snow and ice are extremely low (typically ppb or ppt levels) and thus pre-concentration is required prior to analysis. Stir bar sorptive extraction (SBSE) showed potential for fatty acid compounds, but failed to recover SOA compounds. Solid phase extraction (SPE) recovered compounds across both organic groups but methods improving some recoveries came at the expense of others, and background contamination of fatty acids was high. Rotary evaporation was by far the best performing method across both SOA and fatty acid compounds, with average recoveries of 80%. The optimised preconcentration - HPLC-MS method achieved repeatability of 9% averaged for all compounds. In environmental samples, both concentrations and seasonal trends were observed to be reproducible when analysed in two different laboratories using the same method.


Asunto(s)
Aerosoles/análisis , Organismos Acuáticos/química , Cromatografía Liquida/métodos , Ácidos Grasos/análisis , Hielo , Espectrometría de Masas en Tándem/métodos , Aerosoles/aislamiento & purificación , Biomarcadores/análisis , Calibración , Ácidos Grasos/aislamiento & purificación , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA