Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Med Inform Decis Mak ; 20(1): 60, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228556

RESUMEN

BACKGROUND: The rapid adoption of electronic health records (EHRs) holds great promise for advancing medicine through practice-based knowledge discovery. However, the validity of EHR-based clinical research is questionable due to poor research reproducibility caused by the heterogeneity and complexity of healthcare institutions and EHR systems, the cross-disciplinary nature of the research team, and the lack of standard processes and best practices for conducting EHR-based clinical research. METHOD: We developed a data abstraction framework to standardize the process for multi-site EHR-based clinical studies aiming to enhance research reproducibility. The framework was implemented for a multi-site EHR-based research project, the ESPRESSO project, with the goal to identify individuals with silent brain infarctions (SBI) at Tufts Medical Center (TMC) and Mayo Clinic. The heterogeneity of healthcare institutions, EHR systems, documentation, and process variation in case identification was assessed quantitatively and qualitatively. RESULT: We discovered a significant variation in the patient populations, neuroimaging reporting, EHR systems, and abstraction processes across the two sites. The prevalence of SBI for patients over age 50 for TMC and Mayo is 7.4 and 12.5% respectively. There is a variation regarding neuroimaging reporting where TMC are lengthy, standardized and descriptive while Mayo's reports are short and definitive with more textual variations. Furthermore, differences in the EHR system, technology infrastructure, and data collection process were identified. CONCLUSION: The implementation of the framework identified the institutional and process variations and the heterogeneity of EHRs across the sites participating in the case study. The experiment demonstrates the necessity to have a standardized process for data abstraction when conducting EHR-based clinical studies.


Asunto(s)
Infarto Encefálico , Atención a la Salud , Anciano , Anciano de 80 o más Años , Registros Electrónicos de Salud , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Investigación
2.
J Biomed Inform ; 99: 103310, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31622801

RESUMEN

BACKGROUND: Standards-based clinical data normalization has become a key component of effective data integration and accurate phenotyping for secondary use of electronic healthcare records (EHR) data. HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging clinical data standard for exchanging electronic healthcare data and has been used in modeling and integrating both structured and unstructured EHR data for a variety of clinical research applications. The overall objective of this study is to develop and evaluate a FHIR-based EHR phenotyping framework for identification of patients with obesity and its multiple comorbidities from semi-structured discharge summaries leveraging a FHIR-based clinical data normalization pipeline (known as NLP2FHIR). METHODS: We implemented a multi-class and multi-label classification system based on the i2b2 Obesity Challenge task to evaluate the FHIR-based EHR phenotyping framework. Two core parts of the framework are: (a) the conversion of discharge summaries into corresponding FHIR resources - Composition, Condition, MedicationStatement, Procedure and FamilyMemberHistory using the NLP2FHIR pipeline, and (b) the implementation of four machine learning algorithms (logistic regression, support vector machine, decision tree, and random forest) to train classifiers to predict disease state of obesity and 15 comorbidities using features extracted from standard FHIR resources and terminology expansions. We used the macro- and micro-averaged precision (P), recall (R), and F1 score (F1) measures to evaluate the classifier performance. We validated the framework using a second obesity dataset extracted from the MIMIC-III database. RESULTS: Using the NLP2FHIR pipeline, 1237 clinical discharge summaries from the 2008 i2b2 obesity challenge dataset were represented as the instances of the FHIR Composition resource consisting of 5677 records with 16 unique section types. After the NLP processing and FHIR modeling, a set of 244,438 FHIR clinical resource instances were generated. As the results of the four machine learning classifiers, the random forest algorithm performed the best with F1-micro(0.9466)/F1-macro(0.7887) and F1-micro(0.9536)/F1-macro(0.6524) for intuitive classification (reflecting medical professionals' judgments) and textual classification (reflecting the judgments based on explicitly reported information of diseases), respectively. The MIMIC-III obesity dataset was successfully integrated for prediction with minimal configuration of the NLP2FHIR pipeline and machine learning models. CONCLUSIONS: The study demonstrated that the FHIR-based EHR phenotyping approach could effectively identify the state of obesity and multiple comorbidities using semi-structured discharge summaries. Our FHIR-based phenotyping approach is a first concrete step towards improving the data aspect of phenotyping portability across EHR systems and enhancing interpretability of the machine learning-based phenotyping algorithms.


Asunto(s)
Registros Electrónicos de Salud/clasificación , Interoperabilidad de la Información en Salud , Obesidad/epidemiología , Alta del Paciente , Adulto , Algoritmos , Índice de Masa Corporal , Comorbilidad , Femenino , Humanos , Aprendizaje Automático , Masculino , Fenotipo , Programas Informáticos
3.
Stud Health Technol Inform ; 264: 1502-1503, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438202

RESUMEN

The objective of the study is to augment safety and effectiveness evaluation of medical devices through building a reusable unique device identifier (UDI) interoperability solution. We propose a framework for building a UDI research database for medical device evaluation using the OHDSI common data model (CDM). As a pilot study, we design, develop and evaluate a UDI vocabulary, which would enable tackling challenges of data islands and standardization for medical device evaluation.


Asunto(s)
Bases de Datos Factuales , Proyectos Piloto
4.
JMIR Med Inform ; 7(2): e12109, 2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31066686

RESUMEN

BACKGROUND: Silent brain infarction (SBI) is defined as the presence of 1 or more brain lesions, presumed to be because of vascular occlusion, found by neuroimaging (magnetic resonance imaging or computed tomography) in patients without clinical manifestations of stroke. It is more common than stroke and can be detected in 20% of healthy elderly people. Early detection of SBI may mitigate the risk of stroke by offering preventative treatment plans. Natural language processing (NLP) techniques offer an opportunity to systematically identify SBI cases from electronic health records (EHRs) by extracting, normalizing, and classifying SBI-related incidental findings interpreted by radiologists from neuroimaging reports. OBJECTIVE: This study aimed to develop NLP systems to determine individuals with incidentally discovered SBIs from neuroimaging reports at 2 sites: Mayo Clinic and Tufts Medical Center. METHODS: Both rule-based and machine learning approaches were adopted in developing the NLP system. The rule-based system was implemented using the open source NLP pipeline MedTagger, developed by Mayo Clinic. Features for rule-based systems, including significant words and patterns related to SBI, were generated using pointwise mutual information. The machine learning models adopted convolutional neural network (CNN), random forest, support vector machine, and logistic regression. The performance of the NLP algorithm was compared with a manually created gold standard. The gold standard dataset includes 1000 radiology reports randomly retrieved from the 2 study sites (Mayo and Tufts) corresponding to patients with no prior or current diagnosis of stroke or dementia. 400 out of the 1000 reports were randomly sampled and double read to determine interannotator agreements. The gold standard dataset was equally split to 3 subsets for training, developing, and testing. RESULTS: Among the 400 reports selected to determine interannotator agreement, 5 reports were removed due to invalid scan types. The interannotator agreements across Mayo and Tufts neuroimaging reports were 0.87 and 0.91, respectively. The rule-based system yielded the best performance of predicting SBI with an accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.991, 0.925, 1.000, 1.000, and 0.990, respectively. The CNN achieved the best score on predicting white matter disease (WMD) with an accuracy, sensitivity, specificity, PPV, and NPV of 0.994, 0.994, 0.994, 0.994, and 0.994, respectively. CONCLUSIONS: We adopted a standardized data abstraction and modeling process to developed NLP techniques (rule-based and machine learning) to detect incidental SBIs and WMDs from annotated neuroimaging reports. Validation statistics suggested a high feasibility of detecting SBIs and WMDs from EHRs using NLP.

5.
AMIA Annu Symp Proc ; 2019: 190-199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32308812

RESUMEN

While natural language processing (NLP) of unstructured clinical narratives holds the potential for patient care and clinical research, portability of NLP approaches across multiple sites remains a major challenge. This study investigated the portability of an NLP system developed initially at the Department of Veterans Affairs (VA) to extract 27 key cardiac concepts from free-text or semi-structured echocardiograms from three academic edical centers: Weill Cornell Medicine, Mayo Clinic and Northwestern Medicine. While the NLP system showed high precision and recall easurements for four target concepts (aortic valve regurgitation, left atrium size at end systole, mitral valve regurgitation, tricuspid valve regurgitation) across all sites, we found moderate or poor results for the remaining concepts and the NLP system performance varied between individual sites.


Asunto(s)
Ecocardiografía , Registros Electrónicos de Salud , Interoperabilidad de la Información en Salud , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Procesamiento de Lenguaje Natural , Corazón/anatomía & histología , Corazón/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/fisiopatología , Humanos , Narración , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA