Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948382

RESUMEN

Prior studies show that glycogen synthase kinase 3ß (GSK3ß) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3ß is constitutionally active and phosphorylation of GSK3ß at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3ß is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3ß S389 phosphorylation in diseased hearts and utilized overexpression of GSK3ß carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3ß in primary cardiomyocytes. We found that phosphorylation of GSK3ß at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3ß S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3ß mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3ß S389A or GSK3ß S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3ß S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3ß at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/patología , Animales , Cardiomegalia/patología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas Sprague-Dawley
2.
Arch Toxicol ; 94(6): 2113-2130, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32185414

RESUMEN

Doxorubicin is a widely used anticancer drug that causes dose-related cardiotoxicity. The exact mechanisms of doxorubicin toxicity are still unclear, partly because most in vitro studies have evaluated the effects of short-term high-dose doxorubicin treatments. Here, we developed an in vitro model of long-term low-dose administration of doxorubicin utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Moreover, given that current strategies for prevention and management of doxorubicin-induced cardiotoxicity fail to prevent cancer patients developing heart failure, we also investigated whether the GATA4-targeted compound 3i-1000 has cardioprotective potential against doxorubicin toxicity both in vitro and in vivo. The final doxorubicin concentration used in the chronic toxicity model in vitro was chosen based on cell viability data evaluation. Exposure to doxorubicin at the concentrations of 1-3 µM markedly reduced (60%) hiPSC-CM viability already within 48 h, while a 14-day treatment with 100 nM doxorubicin concentration induced only a modest 26% reduction in hiPCS-CM viability. Doxorubicin treatment also decreased DNA content in hiPSC-CMs. Interestingly, the compound 3i-1000 attenuated doxorubicin-induced increase in pro-B-type natriuretic peptide (proBNP) expression and caspase-3/7 activation in hiPSC-CMs. Moreover, treatment with 3i-1000 for 2 weeks (30 mg/kg/day, i.p.) inhibited doxorubicin cardiotoxicity by restoring left ventricular ejection fraction and fractional shortening in chronic in vivo rat model. In conclusion, the results demonstrate that long-term exposure of hiPSC-CMs can be utilized as an in vitro model of delayed doxorubicin-induced toxicity and provide in vitro and in vivo evidence that targeting GATA4 may be an effective strategy to counteract doxorubicin-induced cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Factor de Transcripción GATA4/metabolismo , Cardiopatías/prevención & control , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Cardiotoxicidad , Caspasas Efectoras/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Precursores de Proteínas/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
3.
Arch Toxicol ; 92(9): 2897-2911, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987409

RESUMEN

Safety assessment of drug candidates in numerous in vitro and experimental animal models is expensive, time consuming and animal intensive. More thorough toxicity profiling already in the early drug discovery projects using human cell models, which more closely resemble the physiological cell types, would help to decrease drug development costs. In this study we aimed to compare different cardiac and stem cell models for in vitro toxicity testing and to elucidate structure-toxicity relationships of novel compounds targeting the cardiac transcription factor GATA4. By screening the effects of eight compounds at concentrations ranging from 10 nM up to 30 µM on the viability of eight different cell types, we identified significant cell type- and structure-dependent toxicity profiles. We further characterized two compounds in more detail using high-content analysis. The results highlight the importance of cell type selection for toxicity screening and indicate that stem cells represent the most sensitive screening model, which can detect toxicity that may otherwise remain unnoticed. Furthermore, our structure-toxicity analysis reveals a characteristic dihedral angle in the GATA4-targeted compounds that causes stem cell toxicity and thus helps to direct further drug development efforts towards non-toxic derivatives.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad/métodos , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/efectos de los fármacos , Factor de Transcripción GATA4/genética , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
4.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637629

RESUMEN

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Humanos , Proteína Homeótica Nkx-2.5/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Cromatografía de Afinidad , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo
5.
Stem Cell Res Ther ; 15(1): 5, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167208

RESUMEN

BACKGROUND: The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS: A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS: The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS: There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipertrofia/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo
6.
Stem Cell Res Ther ; 12(1): 190, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736688

RESUMEN

BACKGROUND: Pharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration. METHODS: Transcription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression. RESULTS: GATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression. CONCLUSIONS: Collectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Diferenciación Celular , Línea Celular , Factor de Transcripción GATA4/genética , Proteína Homeótica Nkx-2.5/genética , Miocitos Cardíacos , Organogénesis , Factores de Transcripción/genética
7.
J Med Chem ; 62(17): 8284-8310, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31431011

RESUMEN

Transcription factors GATA4 and NKX2-5 directly interact and synergistically activate several cardiac genes and stretch-induced cardiomyocyte hypertrophy. Previously, we identified phenylisoxazole carboxamide 1 as a hit compound, which inhibited the GATA4-NKX2-5 transcriptional synergy. Here, the chemical space around the molecular structure of 1 was explored by synthesizing and characterizing 220 derivatives and structurally related compounds. In addition to the synergistic transcriptional activation, selected compounds were evaluated for their effects on transcriptional activities of GATA4 and NKX2-5 individually as well as potential cytotoxicity. The structure-activity relationship (SAR) analysis revealed that the aromatic isoxazole substituent in the southern part regulates the inhibition of GATA4-NKX2-5 transcriptional synergy. Moreover, inhibition of GATA4 transcriptional activity correlated with the reduced cell viability. In summary, comprehensive SAR analysis accompanied by data analysis successfully identified potent and selective inhibitors of GATA4-NKX2-5 transcriptional synergy and revealed structural features important for it.


Asunto(s)
Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Isoxazoles/farmacología , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Factor de Transcripción GATA4/química , Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/química , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/síntesis química , Isoxazoles/química , Estructura Molecular , Unión Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Relación Estructura-Actividad
8.
Sci Rep ; 8(1): 4611, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545582

RESUMEN

Transcription factors are fundamental regulators of gene transcription, and many diseases, such as heart diseases, are associated with deregulation of transcriptional networks. In the adult heart, zinc-finger transcription factor GATA4 is a critical regulator of cardiac repair and remodelling. Previous studies also suggest that NKX2-5 plays function role as a cofactor of GATA4. We have recently reported the identification of small molecules that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. Here, we examined the cardiac actions of a potent inhibitor (3i-1000) of GATA4-NKX2-5 interaction in experimental models of myocardial ischemic injury and pressure overload. In mice after myocardial infarction, 3i-1000 significantly improved left ventricular ejection fraction and fractional shortening, and attenuated myocardial structural changes. The compound also improved cardiac function in an experimental model of angiotensin II -mediated hypertension in rats. Furthermore, the up-regulation of cardiac gene expression induced by myocardial infarction and ischemia reduced with treatment of 3i-1000 or when micro- and nanoparticles loaded with 3i-1000 were injected intramyocardially or intravenously, respectively. The compound inhibited stretch- and phenylephrine-induced hypertrophic response in neonatal rat cardiomyocytes. These results indicate significant potential for small molecules targeting GATA4-NKX2-5 interaction to promote myocardial repair after myocardial infarction and other cardiac injuries.


Asunto(s)
Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Hipertensión/prevención & control , Isoxazoles/farmacología , Infarto del Miocardio/prevención & control , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Angiotensina II/toxicidad , Animales , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Homeótica Nkx-2.5/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Fosforilación , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
9.
J Med Chem ; 60(18): 7781-7798, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28858485

RESUMEN

Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 µM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/química , Isoxazoles/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular , Factor de Transcripción GATA4/agonistas , Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/agonistas , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Humanos , Ratones , Modelos Moleculares , Mapas de Interacción de Proteínas/efectos de los fármacos
10.
Biomaterials ; 94: 93-104, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27107168

RESUMEN

Chronic heart failure, predominantly developed after myocardial infarction, is a leading cause of high mortality worldwide. As existing therapies have still limited success, natural and/or synthetic nanomaterials are emerging alternatives for the therapy of heart diseases. Therefore, we aimed to functionalize undecylenic acid thermally hydrocarbonized porous silicon nanoparticles (NPs) with different targeting peptides to improve the NP's accumulation in different cardiac cells (primary cardiomyocytes, non-myocytes, and H9c2 cardiomyoblasts), additionally to investigate the behavior of the heart-targeted NPs in vivo. The toxicity profiles of the NPs evaluated in the three heart-type cells showed low toxicity at concentrations up to 50 µg/mL. Qualitative and quantitative cellular uptake revealed a significant increase in the accumulation of atrial natriuretic peptide (ANP)-modified NPs in primary cardiomyocytes, non-myocytes and H9c2 cells, and in hypoxic primary cardiomyocytes and non-myocytes. Competitive uptake studies in primary cardiomyocytes showed the internalization of ANP-modified NPs takes place via the guanylate cyclase-A receptor. When a myocardial infarction rat model was induced by isoprenaline and the peptide-modified [(111)In]NPs administered intravenously, the targeting peptides, particularly peptide 2, improved the NPs' accumulation in the heart up to 3.0-fold, at 10 min. This study highlights the potential of these peptide-modified nanosystems for future applications in heart diseases.


Asunto(s)
Corazón/fisiología , Nanopartículas/química , Silicio/química , Adsorción , Animales , Factor Natriurético Atrial/metabolismo , Proteínas Sanguíneas/metabolismo , Supervivencia Celular , Coloides , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Nanopartículas/ultraestructura , Péptidos/química , Porosidad , Ratas Wistar , Temperatura , Tomografía Computarizada de Emisión de Fotón Único , Ácidos Undecilénicos/química
11.
Biomaterials ; 35(29): 8394-405, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24985734

RESUMEN

Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Miocardio/metabolismo , Silicio/química , Animales , Materiales Biocompatibles/efectos adversos , Células Cultivadas , Portadores de Fármacos/efectos adversos , Fibrosis/inducido químicamente , Fibrosis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/genética , Masculino , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Porosidad , Ratas , Ratas Sprague-Dawley , Silicio/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA