Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Cancer ; 134(1): 81-91, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23754304

RESUMEN

In prostate cancer, race/ethnicity is the highest risk factor after adjusting for age. African Americans have more aggressive tumors at every clinical stage of the disease, resulting in poorer prognosis and increased mortality. A major barrier to identifying crucial gene activity differences is heterogeneity, including tissue composition variation intrinsic to the histology of prostate cancer. We hypothesized that differences in gene expression in specific tissue types would reveal mechanisms involved in the racial disparities of prostate cancer. We examined 17 pairs of arrays for AAs and Caucasians that were formed by closely matching the samples based on the known tissue type composition of the tumors. Using pair-wise t-test we found significantly altered gene expression between AAs and CAs. Independently, we performed multiple linear regression analyses to associate gene expression with race considering variation in percent tumor and stroma tissue. The majority of differentially expressed genes were associated with tumor-adjacent stroma rather than tumor tissue. Extracellular matrix, integrin family and signaling mediators of the epithelial-to-mesenchymal transition (EMT) pathways were all downregulated in stroma of AAs. Using MetaCore (GeneGo) analysis, we observed that 35% of significant (p < 10(-3)) pathways identified EMT and 25% identified immune response pathways especially for interleukins-2, -4, -5, -6, -7, -10, -13, -15 and -22 as the major changes. Our studies reveal that altered immune and EMT processes in tumor-adjacent stroma may be responsible for the aggressive nature of prostate cancer in AAs.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/etnología , Neoplasias de la Próstata/patología , Microambiente Tumoral , Negro o Afroamericano , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Análisis de Matrices Tisulares , Transcriptoma , Población Blanca
2.
Biochem Pharmacol ; 75(3): 713-24, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18023427

RESUMEN

Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables, such as cabbage, broccoli, and Brussels sprouts, induces a G1 cell cycle arrest of human breast cancer cells. Structure-activity relationships of I3C that mediate this anti-proliferative response were investigated using synthetic and natural I3C derivatives that contain substitutions at the indole nitrogen. Nitrogen substitutions included N-alkoxy substituents of one to four carbons in length, which inhibit dehydration and the formation of the reactive indolenine. Analysis of growth and cell cycle arrest of indole-treated human breast cancer cells revealed a striking increase in efficacy of the N-alkoxy I3C derivatives that is significantly enhanced by the presence of increasing carbon lengths of the N-alkoxy substituents. Compared to I3C, the half maximal growth arrest responses occurred at 23-fold lower indole concentration for N-methoxy I3C, 50-fold lower concentration for N-ethoxy I3C, 217-fold lower concentration for N-propoxy I3C, and 470-fold lower concentration for N-butoxy I3C. At these lower concentrations, each of the N-alkoxy substituted compounds induced the characteristic I3C response in that CDK6 gene expression, CDK6 promoter activity, and CDK2 specific enzymatic activity for its retinoblastoma protein substrate were strongly down-regulated. 3-Methoxymethylindole and 3-ethoxymethylindole were approximately as bioactive as I3C, whereas both tryptophol and melatonin failed to induce the cell cycle arrest, showing the importance of the C-3 hydroxy methyl substituent on the indole ring. Taken together, our study establishes the first I3C structure-activity relationship for cytostatic activities, and implicates I3C-based N-alkoxy derivatives as a novel class of potentially more potent experimental therapeutics for breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Fase G1/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/genética , Femenino , Humanos , Regiones Promotoras Genéticas , Relación Estructura-Actividad
3.
Cell ; 130(3): 524-34, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17655921

RESUMEN

During Dictyostelium development, prespore cells secrete acyl-CoA binding protein (AcbA). Upon release, AcbA is processed to generate a peptide called spore differentiation factor-2 (SDF-2), which triggers terminal differentiation of spore cells. We have found that cells lacking Golgi reassembly stacking protein (GRASP), a protein attached peripherally to the cytoplasmic surface of Golgi membranes, fail to secrete AcbA and, thus, produce inviable spores. Surprisingly, AcbA lacks a signal sequence and is not secreted via the conventional secretory pathway (endoplasmic reticulum-Golgi-cell surface). GRASP is not required for conventional protein secretion, growth, and the viability of vegetative cells. Our findings reveal a physiological role of GRASP and provide a means to understand unconventional secretion and its role in development.


Asunto(s)
Adenilil Ciclasas/metabolismo , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Membrana/fisiología , Proteínas Protozoarias/fisiología , Secuencia de Aminoácidos , Animales , Dictyostelium/química , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Datos de Secuencia Molecular , Proteínas Protozoarias/metabolismo , Esporas Protozoarias/química , Esporas Protozoarias/crecimiento & desarrollo , Esporas Protozoarias/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA