Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Dev Cell ; 1(6): 795-806, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11740941

RESUMEN

Notch signaling in Drosophila requires a RING finger (RF) protein encoded by neuralized. Here we show that the Xenopus homolog of neuralized (Xneur) is expressed where Notch signaling controls cell fate choices in early embryos. Overexpressing XNeur or putative dominant-negative forms in embryos inhibits Notch signaling. As expected for a RF protein, we show that XNeur fulfills the biochemical requirements of ubiquitin ligases. We also show that wild-type XNeur decreases the cell surface level of the Notch ligand, XDelta1, while putative inhibitory forms of XNeur increase it. Finally, we provide evidence that XNeur acts as a ubiquitin ligase for XDelta1 in vitro. We propose that XNeur plays a conserved role in Notch activation by regulating the cell surface levels of the Delta ligands, perhaps directly, via ubiquitination.


Asunto(s)
Proteínas de Drosophila , Embrión no Mamífero/fisiología , Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Cisteína Endopeptidasas/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Ligasas/química , Ligasas/genética , Microinyecciones , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/ultraestructura , Complejo de la Endopetidasa Proteasomal , Receptores de Superficie Celular/metabolismo , Receptores Notch , Alineación de Secuencia , Transducción de Señal/fisiología , Transactivadores/metabolismo , Alas de Animales/anatomía & histología , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética
2.
Dev Cell ; 1(6): 783-94, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11740940

RESUMEN

The Drosophila gene neuralized (neur) has long been recognized to be essential for the proper execution of a wide variety of processes mediated by the Notch (N) pathway, but its role in the pathway has been elusive. In this report, we present genetic and biochemical evidence that Neur is a RING-type, E3 ubiquitin ligase. Next, we show that neur is required for proper internalization of Dl in the developing eye. Finally, we demonstrate that ectopic Neur targets Dl for internalization and degradation in a RING finger-dependent manner, and that the two exist in a physical complex. Collectively, our data indicate that Neur is a ubiquitin ligase that positively regulates the N pathway by promoting the endocytosis and degradation of Dl.


Asunto(s)
Drosophila melanogaster/fisiología , Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Línea Celular , Cisteína Endopeptidasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Estructuras Embrionarias/citología , Estructuras Embrionarias/metabolismo , Endocitosis/fisiología , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Microscopía Fluorescente , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Fenotipo , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/fisiología , Complejo de la Endopetidasa Proteasomal , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas , Alas de Animales/citología , Dedos de Zinc/genética
3.
J Cell Biol ; 106(2): 469-78, 1988 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-3339098

RESUMEN

The level of transcripts encoding the skeletal muscle acetylcholine receptor (AChR) was determined during embryonic development in Xenopus laevis. cDNAs encoding the alpha, gamma, and delta subunits of the Xenopus AChR were isolated from Xenopus embryo cDNA libraries using Torpedo AChR cDNAs as probes. The Xenopus AChR cDNAs have greater than 60% amino acid sequence homology to their Torpedo homologues and hybridize to transcripts that are restricted to the somites of developing embryos. Northern blot analysis demonstrates that a 2.3-kb transcript hybridizes to the alpha subunit cDNA, a 2.4-kb transcript hybridizes to the gamma subunit cDNA, and that two transcripts, of 1.9 and 2.5 kb, hybridize to the delta subunit cDNA. RNase protection assays demonstrate that transcripts encoding alpha, gamma, and delta subunits are coordinately expressed at late gastrula and that the amount of each transcript increases in parallel with muscle-specific actin mRNA during the ensuing 12 h. After the onset of muscle activity the level of actin mRNA per somite remains relatively constant, whereas the level of alpha subunit and delta subunit transcripts decrease fourfold per somite and the level of gamma subunit transcript decreases greater than 50-fold per somite. The decrease in amount of AChR transcripts per somite, however, occurs when embryos are paralyzed with local anaesthetic during their development. These results demonstrate that AChR transcripts in Xenopus are initially expressed coordinately, but that gamma subunit transcript levels are regulated differently than alpha and delta at later stages. Moreover, these results demonstrate that AChR transcript levels in Xenopus myotomal muscle cells are not responsive to electrical activity and suggest that AChR transcript levels are influenced by other regulatory controls.


Asunto(s)
Receptores Nicotínicos/genética , Xenopus laevis/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Electrofisiología , Gástrula/fisiología , Regulación de la Expresión Génica , Sustancias Macromoleculares , Datos de Secuencia Molecular , Desnervación Muscular , Músculos/inervación , Músculos/fisiología , Hibridación de Ácido Nucleico , ARN Mensajero/metabolismo , Sinapsis/fisiología , Transcripción Genética
4.
Science ; 249(4975): 1438-41, 1990 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-2402639

RESUMEN

During the development of a vertebrate embryo, cell fate is determined by inductive signals passing between neighboring tissues. Such determinative interactions have been difficult to characterize fully without knowledge of the molecular mechanisms involved. Mutations of Drosophila and the nematode Caenorhabditis elegans have been isolated that define a family of related gene products involved in similar types of cellular inductions. One of these genes, the Notch gene from Drosophila, is involved with cell fate choices in the neurogenic region of the blastoderm, in the developing nervous system, and in the eye-antennal imaginal disc. Complementary DNA clones were isolated from Xenopus embryos with Notch DNA in order to investigate whether cell-cell interactions in vertebrate embryos also depend on Notch-like molecules. This approach identified a Xenopus molecule, Xotch, which is remarkably similar to Drosophila Notch in both structure and developmental expression.


Asunto(s)
Drosophila/genética , Genes , Xenopus/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/fisiología , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Homología de Secuencia de Ácido Nucleico
5.
Science ; 255(5052): 1702-5, 1992 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-1313188

RESUMEN

A complementary DNA coding for a second type of activin receptor (ActRIIB) has been cloned from Xenopus laevis that fulfills the structural criteria of a transmembrane protein serine kinase. Ectodermal explants from embryos injected with activin receptor RNA show increased sensitivity to activin, as measured by the induction of muscle actin RNA. In addition, injected embryos display developmental defects characterized by inappropriate formation of dorsal mesodermal tissue. These results demonstrate that this receptor is involved in signal transduction and are consistent with the proposed role of activin in the induction and patterning of mesoderm in Xenopus embryos.


Asunto(s)
Inhibinas/fisiología , Receptores de Superficie Celular/genética , Xenopus laevis/genética , Receptores de Activinas , Activinas , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Xenopus laevis/embriología
6.
Neuron ; 1(7): 545-55, 1988 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3078413

RESUMEN

The neural cell adhesion molecule, N-CAM, is known to be expressed very early in the development of the vertebrate nervous system. In frog embryos, N-CAM expression increases dramatically in ectoderm coincident with the formation of the neural plate and tube, suggesting that morphogenesis of the early nervous system is controlled in part by differential expression of N-CAM. This model was tested by introducing synthetic N-CAM transcripts into Xenopus embryos so that N-CAM was indiscriminately expressed at high levels on the surface of both induced and noninduced ectodermal cells throughout gastrulation and neurulation. Analysis of these embryos shows that high levels of N-CAM misexpression do not effect neural tube formation even though ectopic expression of N-CAM in epidermis and somitic mesoderm caused specific defects in the structure of these tissues. By showing that the properly regulated expression of N-CAM is not essential for neural tube formation, these results provide compelling evidence that N-CAM on its own does not act as a regulatory molecule during early neural development.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Desarrollo Embrionario y Fetal , Regulación de la Expresión Génica , Sistema Nervioso/embriología , Xenopus laevis/embriología , Animales , Moléculas de Adhesión Celular Neuronal/genética , Inmunohistoquímica , Sistema Nervioso/metabolismo , ARN Mensajero/metabolismo , Xenopus laevis/metabolismo
7.
Neuron ; 4(4): 493-506, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2322458

RESUMEN

N-cadherin is a calcium-dependent, cell adhesion molecule that has been proposed to play a role in morphogenesis in vertebrate embryos. Throughout early neural development, N-cadherin is expressed during the morphogenetic changes that occur when ectoderm, in response to neural induction, forms a neural plate and tube. To study the role of N-cadherin in these processes, cDNA clones encoding Xenopus laevis N-cadherin were isolated and used to study the expression of N-cadherin in frog embryos. These studies showed that N-cadherin RNA is not expressed at detectable levels in early cleavage embryos or in isolated ectoderm in the absence of neural induction. However, N-cadherin RNA rapidly appeared in ectoderm exposed to a heterologous neural inducer, indicating that N-cadherin expression, as an early response to induction, precedes the morphogenetic events associated with early neural development. The role of N-cadherin in these morphogenetic events was studied by ectopically expressing N-cadherin in the ectoderm of embryos prior to induction. The ectopic expression of this protein in ectoderm led to the formation of cell boundaries and to severe morphological defects. These results are consistent with the hypothesis that the morphogenetic changes associated with early neural development are controlled, in part, by the induced expression of N-cadherin in the neural plate.


Asunto(s)
Cadherinas/fisiología , Morfogénesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Adhesión Celular , Clonación Molecular , Ectodermo/fisiología , Inducción Embrionaria , Microinyecciones , Datos de Secuencia Molecular , Defectos del Tubo Neural/genética , ARN Mensajero/genética , Distribución Tisular , Xenopus laevis/embriología
8.
Curr Biol ; 8(6): 325-34, 1998 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-9512415

RESUMEN

BACKGROUND: The assembly of complex tissues during embryonic development is thought to depend on differential cell adhesion, mediated in part by the cadherin family of cell-adhesion molecules. The protocadherins are a new subfamily of cadherins; their extracellular domains comprise cadherin-like repeats but their intracellular domains differ significantly from those of classical cadherins. Little is known about the ability of protocadherins to mediate the adhesion of embryonic cells, or whether they play a role in the formation of embryonic tissues. RESULTS: We report the isolation and characterization of a novel protocadherin, termed NF-protocadherin (NFPC), that is expressed in Xenopus embryos. NFPC showed a striking pattern of expression in early embryos, displaying predominant expression within the deep, sensorial layer of the embryonic ectoderm and in a restricted group of cells in the neural folds, but was largely absent from the neural plate and surrounding placodal regions. Ectopic expression in embryos demonstrated that NFPC could mediate cell adhesion within the embryonic ectoderm. In addition, expression of a dominant-negative form of NFPC disrupted the integrity of embryonic ectoderm, causing cells in the deep layer to dissociate, though leaving the outer layer relatively intact. CONCLUSIONS: Our results indicate that NFPC is required as a cell-adhesion molecule during embryonic development, and its function is distinct from that of classical cadherins in governing the formation of a two-layer ectoderm. These results suggest that NFPC, and protocadherins in general, are involved in novel cell-cell adhesion mechanisms that play important roles in tissue histogenesis.


Asunto(s)
Cadherinas/fisiología , Moléculas de Adhesión Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Vesícula/inducido químicamente , Cadherinas/química , Cadherinas/aislamiento & purificación , ADN Complementario , Ectodermo/metabolismo , Inmunoquímica , Hibridación in Situ , Protocadherinas , ARN , Alineación de Secuencia , Xenopus/embriología , Proteínas de Xenopus
9.
Curr Biol ; 10(14): 821-30, 2000 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-10899001

RESUMEN

BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.


Asunto(s)
Cadherinas/fisiología , Xenopus/embriología , Animales , Tipificación del Cuerpo/genética , Cadherinas/genética , Adhesión Celular , Cicloheximida/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Proteínas de la Membrana/fisiología , Receptores Notch , Transducción de Señal , Somitos/citología , Xenopus/genética
10.
Mol Cell Biol ; 14(6): 4280-5, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196664

RESUMEN

The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells.


Asunto(s)
Embrión no Mamífero/fisiología , Inhibinas/farmacología , Mesodermo/fisiología , Receptores de Factores de Crecimiento/fisiología , Receptores de Factores de Crecimiento Transformadores beta/fisiología , Factor de Crecimiento Transformador beta/farmacología , Xenopus laevis/embriología , Receptores de Activinas , Activinas , Animales , Embrión no Mamífero/citología , Mesodermo/citología , Mesodermo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Factores de Crecimiento/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Transducción de Señal
11.
Curr Opin Neurobiol ; 8(1): 27-36, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9568389

RESUMEN

Recent progress has been made in defining the developmental mechanisms that contribute to the diversification of motor neuron subtypes, which differ in transcription factor gene expression and synaptic connections. These studies suggest that progenitor cells acquire specific motor neuron identities through the coordinate actions of multiple factors. Current evidence suggests that Sonic hedgehog initiates a common pathway for motor neuron differentiation, while positionally distributed factors act to assign subtype identities.


Asunto(s)
Neuronas Motoras/fisiología , Sistema Nervioso/crecimiento & desarrollo , Neuronas/fisiología , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Sistema Nervioso/embriología , Embarazo
12.
Nat Cell Biol ; 14(2): 140-7, 2012 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-22231168

RESUMEN

Multiciliate cells function prominently in the respiratory system, brain ependyma and female reproductive tract to produce vigorous fluid flow along epithelial surfaces. These specialized cells form during development when epithelial progenitors undergo an unusual form of ciliogenesis, in which they assemble and project hundreds of motile cilia. Notch inhibits multiciliate cell formation in diverse epithelia, but how progenitors overcome lateral inhibition and initiate multiciliate cell differentiation is unknown. Here we identify a coiled-coil protein, termed multicilin, which is regulated by Notch and highly expressed in developing epithelia where multiciliate cells form. Inhibiting multicilin function specifically blocks multiciliate cell formation in Xenopus skin and kidney, whereas ectopic expression induces the differentiation of multiciliate cells in ectopic locations. Multicilin localizes to the nucleus, where it directly activates the expression of genes required for multiciliate cell formation, including foxj1 and genes mediating centriole assembly. Multicilin is also necessary and sufficient to promote multiciliate cell differentiation in mouse airway epithelial cultures. These findings indicate that multicilin initiates multiciliate cell differentiation in diverse tissues, by coordinately promoting the transcriptional changes required for motile ciliogenesis and centriole assembly.


Asunto(s)
Diferenciación Celular , Centriolos/fisiología , Cilios/fisiología , Proteínas de Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Núcleo Celular/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Hibridación in Situ , Riñón/citología , Riñón/embriología , Riñón/metabolismo , Masculino , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Piel/citología , Piel/embriología , Piel/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo
14.
Annu Rev Neurosci ; 15: 251-84, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1575443

RESUMEN

Genes that are differentially expressed in the ectoderm as it diverts along the neural and epidermal pathways of differentiation can be used to study the inducing signals underlying induction as well as how ectoderm responds to these signals by forming neural tissue. Although these genes have provided, and will continue to provide, new information about the induction process, they are not likely to provide the whole story. For example, Notch is a gene required for neurogenesis in Drosophila embryos. When the Notch gene product is absent, the embryo forms far too many neuroblasts at the expense of the hypodermal cell layer (Artavanis-Tsakonis 1988, Campos-Ortega 1988). Even though Notch appears to play a role in deciding the fate of neural/hypodermal cells, the Notch gene product is expressed ubiquitously in early embryos in the neurogenic region (Hartley et al 1987, Kidd et al 1989). Thus, one possibility is that Notch function does not necessarily depend on differential expression of the Notch gene product within cells in the neurogenic regions [although an alternative view has been suggested by Greenspan (1990)]. Thus, some of the molecules controlling early neural development may not be expressed differentially when the ectoderm forms the neural plate. Obviously, other approaches will have to be taken to isolate and characterize these molecules. In this light, it is noteworthy that a molecule has been identified in Xenopus that is remarkably similar to Drosophila Notch in both structure and developmental expression (Coffman et al 1990). One hope is that the analysis of this molecule in combination with the molecules that are differentially expressed during neural induction will eventually lead to a molecular understanding of early neural development in vertebrate embryos.


Asunto(s)
Embrión no Mamífero/fisiología , Sistema Nervioso/embriología , Xenopus/crecimiento & desarrollo , Animales
15.
Cell ; 69(2): 225-36, 1992 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-1568244

RESUMEN

Differential adhesion between embryonic cells has been proposed to be mediated by a family of closely related glycoproteins called the cadherins. The cadherins mediate adhesion in part through an interaction between the cadherin cytoplasmic domain and intracellular proteins, called the catenins. To determine whether these interactions could regulate cadherin function in embryos, a form of N-cadherin was generated that lacks an extracellular domain. Expression of this mutant in Xenopus embryos causes a dramatic inhibition of cell adhesion. Analysis of the mutant phenotype shows that at least two regions of the N-cadherin cytoplasmic domain can inhibit adhesion and that the mutant cadherin can inhibit catenin binding to E-cadherin. These results suggest that cadherin-mediated adhesion can be regulated by cytoplasmic interactions and that this regulation may contribute to morphogenesis when emerging tissues coexpress several cadherin types.


Asunto(s)
Cadherinas/metabolismo , Adhesión Celular , Proteínas del Citoesqueleto/metabolismo , Animales , Secuencia de Bases , Cadherinas/genética , Citoplasma/metabolismo , Ectodermo/metabolismo , Microinyecciones , Datos de Secuencia Molecular , Morfogénesis , Mutación , Unión Proteica , ARN Mensajero/genética , Xenopus/embriología , Xenopus/genética , alfa Catenina
16.
Perspect Dev Neurobiol ; 3(1): 3-15, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8542254

RESUMEN

Neural induction has long been known as the process by which the ectoderm of vertebrate embryos initiates neural development. During this inductive interaction, a region of the embryo called the organizer is a source of inducing signals that directs ectoderm away from an epidermal into a neural fate, thereby forming the neural plate and tube. In this review, we will discuss recent progress in characterizing two molecules in Xenopus embryos, noggin and follistatin, which appear to have many of the properties expected of neural inducers produced by the organizer. In addition, we will discuss progress that has been made in characterizing Xenopus homologs of the neurogenic and proneural genes that control the decision between a neural and epidermal fate in the Drosophila embryos. A model is presented in which these genes act downstream of neural induction in vertebrates to control the generation of neural precursor cells during neurogenesis.


Asunto(s)
Anfibios/embriología , Desarrollo Embrionario , Inducción Embrionaria , Sistema Nervioso/embriología , Activinas , Anfibios/genética , Animales , Proteínas Portadoras , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Folistatina , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genes de Insecto , Genes Reguladores , Glicoproteínas/genética , Glicoproteínas/fisiología , Inhibinas/genética , Inhibinas/fisiología , Modelos Biológicos , Proteínas/genética , Proteínas/fisiología , Especificidad de la Especie , Xenopus laevis/embriología
17.
Dev Biol ; 174(1): 104-14, 1996 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-8626010

RESUMEN

We have isolated Xbr-1, a novel Xenopus homeobox gene that defines a new class of homeobox genes, distantly related to the Drosophila BarH1 and BarH2 genes. Xbr-1 is predominantly expressed in the developing Xenopus eye, starting as early as the neural plate stage. At early stages of eye development XBR-1 is expressed in the eye vesicle dorsally, in the tissue between the prospective neural retina and pigment epithelium. Later, in the optic cup, it is restricted to the prospective dorsal ciliary margin, an area containing progenitor cells at the edge of retina. Comparing the expression of Xbr-1 in the eye to that of X-Notch-1 suggests that Xbr-1 marks a unique population of pluripotent stem cells within the dorsal ciliary margin. The expression of Xbr-1 and BMP-4 in the dorsal ciliary margin is largely coincident, suggesting that the two molecules interact. We propose that Xbr-1 and BMP-4 may play a role in the development of progenitor cells on the dorsal half of the eye and that they may be involved in the establishment of polarity of the eye along the dorsoventral axis.


Asunto(s)
Proteínas del Ojo/genética , Ojo/embriología , Proteínas de Homeodominio/genética , Proteínas de Xenopus , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Hibridación in Situ , Datos de Secuencia Molecular , ARN Mensajero/genética , Alineación de Secuencia
18.
Development ; 122(7): 2295-301, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8681809

RESUMEN

We have compared the roles of XASH-3 and NeuroD, two basic helix-loop-helix transcription factors, in the formation of primary neurons in early Xenopus embryos. When ectopically expressed in Xenopus embryos, XASH-3 and NeuroD induce ectopic primary neurons in very different spatial patterns. We show that the pattern of primary neurons induced by XASH-3 and NeuroD can be accounted for by a difference in their sensitivity to inhibitory interactions mediated by the neurogenic genes, X-Delta-1 and X-Notch-1. Both NeuroD and XASH-3 promote the expression of the inhibitory ligand, X-Delta-1. However, XASH-3 appears to be sensitive to the inhibitory effects of X-Delta-1 while NeuroD is much less so. Consequently only a subset of cells that ectopically express XASH-3 eventually form neurons, giving a scattered pattern, while the ectopic expression of NeuroD leads to a relatively dense pattern of ectopic neurons. We propose that differences in the sensitivity of XASH-3 and NeuroD to lateral inhibition play an important role during their respective roles in neuronal determination and differentiation.


Asunto(s)
Secuencias Hélice-Asa-Hélice/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/embriología , Factores de Transcripción/genética , Xenopus/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/fisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores/fisiología , Hibridación in Situ , Sistema Nervioso/citología , Neuronas/fisiología , ARN/genética , ARN/farmacología , Células Madre , Transcripción Genética , Xenopus/genética
19.
Development ; 117(3): 961-75, 1993 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8100768

RESUMEN

The polymerase chain reaction (PCR) was used to isolated five Xenopus homeobox clones (X-dll1 to 5) that are related to the Drosophila Distal-less (Dll) gene and we propose a subdivision of the vertebrate distal-less gene family according to sequence similarities. cDNA clones were isolated for X-dll2, 3 and 4, and their expression was studied by RNase protection and in situ hybridization. X-dll2, which belongs to a separate subfamily than X-dll3 and 4, is not expressed in the neural ectoderm. X-dll3 and X-dll4, which belong to the same subfamily, have a similar but not identical pattern of expression that is restricted to anterior ectodermal derivatives, namely the ventral forebrain, the cranial neural crest and the cement gland. X-dll3 is also expressed in the olfactory and otic placodes while X-dll4 is expressed in the developing eye. X-dll3 differs from the other Xenopus genes and the previously isolated Dll-related mouse genes, in that localized expression can be detected by in situ hybridization very early in development, in the anterior-transverse ridge of the open neural plate. Based on that early expression pattern, we suggest that X-dll3 marks the rostral-most part of the neural plate, which gives rise to the ventral forebrain. Finally, we have used these Xenopus distal-less genes to show that the anterior neural plate can be induced by signals that spread within the plane of neural ectoderm, indicating that at least the initial steps of forebrain development do not require signals from underlying mesoderm.


Asunto(s)
Expresión Génica/fisiología , Genes Homeobox/genética , Prosencéfalo/embriología , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Hibridación in Situ , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Xenopus laevis/embriología
20.
Development ; 122(11): 3409-18, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8951057

RESUMEN

During early development of the Xenopus central nervous system (CNS), neuronal differentiation can be detected posteriorly at neural plate stages but is delayed anteriorly until after neural tube closure. A similar delay in neuronal differentiation also occurs in the anterior neural tissue that forms in vitro when isolated ectoderm is treated with the neural inducer noggin. Here we examine the factors that control the timing of neuronal differentiation both in embryos and in neural tissue induced by noggin (noggin caps). We show that the delay in neuronal differentiation that occurs in noggin caps cannot be overcome by inhibiting the activity of the neurogenic gene, X-Delta-1, which normally inhibits neuronal differentiation, suggesting that it represents a novel level of regulation. Conversely, we show that the timing of neuronal differentiation can be changed from late to early after treating noggin caps or embryos with retinoic acid (RA), a putative posteriorising agent. Concommittal with changes in the timing of neuronal differentiation, RA suppresses the expression of anterior neural genes and promotes the expression of posterior neural genes. The level of early neuronal differentiation induced by RA alone is greatly increased by the additional expression of the proneural gene, XASH3. These results indicate that early neuronal differentiation in neuralised ectoderm requires posteriorising signals, as well as signals that promote the activity of proneural genes such as XASH3. In addition, these result suggest that neuronal differentiation is controlled by anteroposterior (A-P) patterning, which exerts a temporal control on the onset of neuronal differentiation.


Asunto(s)
Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Neuronas/citología , Proteínas/fisiología , Tretinoina/fisiología , Xenopus laevis/embriología , Animales , Proteínas Portadoras , Diferenciación Celular , Ectodermo/citología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/fisiología , Mesodermo/citología , Tubulina (Proteína)/metabolismo , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA