RESUMEN
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRß). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRß has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Asunto(s)
Glucocorticoides , Sistema Hipotálamo-Hipofisario , Masculino , Animales , Femenino , Humanos , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Caracteres Sexuales , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Isoformas de Proteínas/metabolismo , Mamíferos/metabolismoRESUMEN
Liver fibrosis commences with liver injury stimulating transforming growth factor beta (TGFß) activation of hepatic stellate cells (HSCs), causing scarring and irreversible damage. TGFß induces expression of the transcription factor Forkhead box S1 (FOXS1) in hepatocytes and may have a role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no studies have determined how it affects HSCs. We analyzed human livers with cirrhosis, HCC, and a murine fibrosis model and found that FOXS1 expression is significantly higher in fibrotic livers but not in HCC. Next, we treated human LX2 HSC cells with TGFß to activate fibrotic pathways, and FOXS1 mRNA was significantly increased. To study TGFß-FOXS1 signaling, we developed human LX2 FOXS1 CRISPR KO and scrambled control HSCs. To determine differentially expressed gene transcripts controlled by TGFß-FOXS1, we performed RNA-seq in the FOXS1 KO and control cells and over 400 gene responses were attenuated in the FOXS1 KO HSCs with TGFß-activation. To validate the RNA-seq findings, we used our state-of-the-art PamGene PamStation kinase activity technology that measures hundreds of signaling pathways nonselectively in real time. Using our RNA-seq data, kinase activity data, and descriptive measurements, we found that FOXS1 controls pathways mediating TGFß responsiveness, protein translation, and proliferation. Our study is the first to identify that FOXS1 may serve as a biomarker for liver fibrosis and HSC activation, which may help with early detection of hepatic fibrosis or treatment options for end-stage liver disease.
Asunto(s)
Factores de Transcripción Forkhead , Expresión Génica , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Biomarcadores/metabolismo , Técnicas de Inactivación de Genes , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/genéticaRESUMEN
We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
Asunto(s)
Eicosanoides , Glucocorticoides , Inflamación , Lipogénesis , Hígado , Receptores de Glucocorticoides , Animales , Ratones , Hígado/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Eicosanoides/metabolismo , Glucocorticoides/metabolismo , Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Metabolismo de los LípidosRESUMEN
The leading cause of death in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular disease (CVD). However, the mechanisms are unknown. Mice deficient in hepatocyte proliferator-activated receptor-α (PPARα) (PparaHepKO) exhibit hepatic steatosis on a regular chow diet, making them prone to manifesting NAFLD. We hypothesized that the PparaHepKO mice might be predisposed to poorer cardiovascular phenotypes due to increased liver fat content. Therefore, we used PparaHepKO and littermate control mice fed a regular chow diet to avoid complications with a high-fat diet, such as insulin resistance and increased adiposity. After 30 wk on a standard diet, male PparaHepKO mice exhibited elevated hepatic fat content compared with littermates as measured by Echo MRI (11.95 ± 1.4 vs. 3.74 ± 1.4%, P < 0.05), hepatic triglycerides (1.4 ± 0.10 vs. 0.3 ± 0.01 mM, P < 0.05), and Oil Red O staining, despite body weight, fasting blood glucose, and insulin levels being the same as controls. The PparaHepKO mice also displayed elevated mean arterial blood pressure (121 ± 4 vs. 108 ± 2 mmHg, P < 0.05), impaired diastolic function, cardiac remodeling, and enhanced vascular stiffness. To determine mechanisms controlling the increase in stiffness in the aorta, we used state-of-the-art PamGene technology to measure kinase activity in this tissue. Our data suggest that the loss of hepatic PPARα induces alterations in the aortas that reduce the kinase activity of tropomyosin receptor kinases and p70S6K kinase, which might contribute to the pathogenesis of NAFLD-induced CVD. These data indicate that hepatic PPARα protects the cardiovascular system through some as-of-yet undefined mechanism.
Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Enfermedades Cardiovasculares/genética , Dieta Alta en Grasa , Hipertensión/patología , Hígado/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genéticaRESUMEN
BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.
Asunto(s)
Hepatopatías , Receptor de Insulina , Humanos , Ratones , Animales , Receptor de Insulina/metabolismo , Roedores , Cirrosis Hepática/patología , Hígado/patología , Hepatopatías/patología , Fibrosis , Proteínas Quinasas/metabolismo , Colágeno/metabolismo , Serina/metabolismo , Receptores con Dominio Discoidina/metabolismo , Treonina/metabolismoRESUMEN
Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin's known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.
Asunto(s)
Bilirrubina/metabolismo , PPAR alfa/metabolismo , Bilirrubina/fisiología , Unión Competitiva , Células HEK293 , Humanos , Ligandos , PPAR alfa/fisiología , Unión Proteica/fisiologíaRESUMEN
Excessive fructose intake is a risk factor for the development of obesity and its complications. Targeting ketohexokinase (KHK), the first enzyme of fructose metabolism, has been investigated for the management of MASLD. We compared the effects of systemic, small molecule inhibitor of KHK enzymatic activity to hepatocyte-specific, GalNAc-siRNA mediated knockdown of KHK in mice on a HFD. We measured KHK enzymatic activity, extensively quantified glycogen accumulation, performed RNAseq analysis, and enumerated hepatic metabolites using mass spectrometry. Both KHK siRNA and KHK inhibitor led to an improvement in liver steatosis, however, via substantially different mechanisms. KHK knockdown decreased the de novo lipogenesis pathway, whereas the inhibitor increased the fatty acid oxidation pathway. Moreover, KHK knockdown completely prevented hepatic fructolysis and improved glucose tolerance. Conversely, the KHK inhibitor only partially reduced fructolysis, but it also targeted triokinase, mediating the third step of fructolysis. This leads to the accumulation of fructose-1 phosphate, resulting in glycogen accumulation, hepatomegaly, and impaired glucose tolerance. Overexpression of wild-type, but not kinase-dead KHK in cultured hepatocytes increased hepatocyte injury and glycogen accumulation when treated with fructose. The differences between KHK inhibition and knockdown are, in part, explained by the kinase-dependent and independent effects of KHK on hepatic metabolism.
RESUMEN
Bilirubin levels in obese humans and rodents have been shown to be lower than in their lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased, the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR, as compared to lean women. The urobilin levels were positively associated with HOMA IR in both groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin levels are associated with obesity and its comorbidities, such as insulin resistance.
RESUMEN
Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown. Therefore, we used liquid chromatography-mass spectroscopy (LC-MS) to determine the hepatic lipid composition of obese mice with NAFLD treated with bilirubin nanoparticles or vehicle control. We placed the mice on a high-fat diet (HFD) for 24 weeks and then treated them with bilirubin nanoparticles or vehicle control for 4 weeks while maintaining the HFD. Bilirubin nanoparticles suppressed hepatic fat content overall. After analyzing the lipidomics data, we determined that bilirubin inhibited the accumulation of ceramides in the liver. The bilirubin nanoparticles significantly lowered the hepatic expression of two essential enzymes that regulate ceramide production, Sgpl1 and Degs1. Our results demonstrate that the bilirubin nanoparticles improve hepatic fat content by reducing ceramide production, remodeling the liver fat content, and improving overall metabolic health.
RESUMEN
Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR). In this study, male C57BL/6J mice were fed a high-fat diet (HFD, 60%) for 30 weeks to induce NAFLD and were treated subcutaneously with GNUR or sham (CTRL) once weekly for six weeks while continuing the HFD. The results show that GNUR treatments significantly raised plasma bilirubin levels and reduced plasma levels of the bilirubin catabolized product, urobilin. We show that GNUR decreased liver fat content and ceramide production via lipidomics and lowered fasting blood glucose and insulin levels. We performed extensive kinase activity analyses using our PamGene PamStation kinome technology and found a reorganization of the kinase pathways and a significant decrease in inflammatory mediators with GNUR versus CTRL treatments. These results demonstrate that GNUR increases plasma bilirubin and reduces plasma urobilin, reducing NAFLD and inflammation and improving overall liver health. These data indicate that UGT1A1 antagonism might serve as a treatment for NAFLD and may improve obesity-associated comorbidities.
Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Urobilina/metabolismo , Bilirrubina , Ratones Endogámicos C57BL , Hígado/metabolismo , Transducción de Señal , Lípidos , Resistencia a la Insulina/genéticaRESUMEN
BACKGROUND AND AIMS: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism. APPROACH AND RESULTS: Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks. Mice were necropsied after a 16 h fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging, kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis (Plin2, Cidec, G0S2) and in polyunsaturated fatty acid metabolism (Elovl5, Fads1, Elovl2), while only female LKO mice increased genes involved in inflammation (Ly6d, Mmp12, Cxcl2). Kinase profiling showed decreased protein kinase A activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. CONCLUSIONS: Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
Asunto(s)
Ácidos Docosahexaenoicos , Hígado Graso , Femenino , Masculino , Animales , Ratones , Fosfolípidos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Hígado Graso/metabolismo , ARNRESUMEN
Background and Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism. Approach and Results: Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks. Mice were necropsied after a 16 hour fast, and tissues were collected for lipidomics, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), kinome analysis, RNA-sequencing, and protein expression by immunoblotting. Female LKO mice had increased serum alanine aminotransferase (ALT) levels which were associated with greater deposition of hepatic lipids, while male mice were not affected by CPT1a deletion relative to male control mice. Mice with CPT1a deletion had reductions in DHA-containing phospholipids at the expense of monounsaturated fatty acids (MUFA)-containing phospholipids in both whole liver and at the level of the lipid droplet (LD). Male and female LKO mice increased RNA levels of genes involved in LD lipolysis ( Plin2 , Cidec , G0S2 ) and in polyunsaturated fatty acid (PUFA) metabolism ( Elovl5, Fads1, Elovl2 ), while only female LKO mice increased genes involved in inflammation ( Ly6d, Mmp12, Cxcl2 ). Kinase profiling showed decreased protein kinase A (PKA) activity, which coincided with increased PLIN2, PLIN5, and G0S2 protein levels and decreased triglyceride hydrolysis in LKO mice. Conclusions: Liver-specific deletion of CPT1a promotes sexually dimorphic steatotic liver disease (SLD) in mice, and here we have identified new mechanisms by which females are protected from HFD-induced liver injury.
RESUMEN
Women report greater cigarette cravings during the menstrual cycle phase with higher circulating levels of 17ß-estradiol (E2), which is metabolized to estrone (E1). Both E2 and E1 bind to estrogen receptors (ERs), which have been highly studied in the breast, uterus, and ovary. Recent studies have found that ERs are also located on GABAergic medium spiny neurons (MSNs) within the nucleus accumbens core (NAcore). Glutamatergic plasticity in NAcore MSNs is altered following nicotine use; however, it is unknown whether estrogens impact this neurobiological consequence. To test the effect of estrogen on nicotine use, we ovariectomized (OVX) female rats that then underwent nicotine self-administration acquisition and compared them to ovary-intact (sham) rats. The OVX animals then received either sesame oil (vehicle), E2, or E1+E2 supplementation for 4 or 20 d before nicotine sessions. While both ovary-intact and OVX females readily discriminated levers, OVX females consumed less nicotine than sham females. Further, neither E2 nor E1+E2 increased nicotine consumption back to sham levels following OVX, regardless of the duration of the treatment. OVX also rendered NAcore MSNs in a potentiated state following nicotine self-administration, which was reversed by 4 d of systemic E2 treatment. Finally, we found that E2 and E1+E2 increased ERα mRNA in the NAcore, but nicotine suppressed this regardless of hormone treatment. Together, these results show that estrogens regulate nicotine neurobiology, but additional factors may be required to restore nicotine consumption to ovary-intact levels.
Asunto(s)
Estrógenos , Nicotina , Animales , Estradiol , Femenino , Humanos , Nicotina/farmacología , Ovariectomía , Ratas , Receptores de Estrógenos/metabolismoRESUMEN
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for ß-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Asunto(s)
Tejido Adiposo Blanco/metabolismo , Polaridad Celular , Inflamación/patología , Lipogénesis , Macrófagos/patología , PPAR alfa/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Adipocitos/metabolismo , Adiposidad , Aminoácidos/sangre , Animales , Biomarcadores/metabolismo , Peso Corporal , Colesterol/sangre , Dieta Alta en Grasa , Femenino , Inflamación/sangre , Lipidómica , Macrófagos/metabolismo , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Tamaño de los Órganos , Especificidad de Órganos , PPAR alfa/metabolismo , Transducción de SeñalRESUMEN
Evidence suggests the hypothalamic-pituitary-adrenal (HPA) axis is involved in Alcohol Use Disorders (AUDs), which might be mediated by an imbalance of glucocorticoid receptor (GR), GRα and GRß, activity. GRß antagonizes the GRα isoform to cause glucocorticoid (GC) resistance. In the present study, we aimed to investigate the effects of chronic continuous free-choice access to ethanol on GR isoform expression in subregions of the mesocorticolimbic reward circuit. Adult male alcohol-preferring (P) rats had concurrent access to 15% and 30% ethanol solutions, with ad lib access to lab chow and water, for six weeks. Quantitative Real-time PCR (RT-PCR) analysis showed that chronic ethanol consumption reduced GRα expression in the nucleus accumbens shell (NAcsh) and hippocampus, whereas ethanol drinking reduced GRß in the nucleus accumbens core (NAcc), prefrontal cortex (PFC), and hippocampus. An inhibitor of GRα, microRNA-124-3p (miR124-3p) was significantly higher in the NAcsh, and GC-induced gene, GILZ, as a measure of GC-responsiveness, was significantly lower. These were not changed in the NAcc. Likewise, genes associated with HPA axis activity were not significantly changed by ethanol drinking [i.e., corticotrophin-releasing hormone (Crh), adrenocorticotrophic hormone (Acth), and proopiomelanocortin (Pomc)] in these brain regions. Serum corticosterone levels were not changed by ethanol drinking. These data indicate that the expression of GRα and GRß isoforms are differentially affected by ethanol drinking despite HPA-associated peptides remaining unchanged, at least at the time of tissue harvesting. Moreover, the results suggest that GR changes may stem from ethanol-induced GC-resistance in the NAcsh. These findings confirm a role for stress in high ethanol drinking, with GRα and GRß implicated as targets for the treatment of AUDs.