Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375361

RESUMEN

The c-Jun N-terminal kinase (JNK) family includes three proteins (JNK1-3) that regulate many physiological processes, including cell proliferation and differentiation, cell survival, and inflammation. Because of emerging data suggesting that JNK3 may play an important role in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease, as well as cancer pathogenesis, we sought to identify JNK inhibitors with increased selectivity for JNK3. A panel of 26 novel tryptanthrin-6-oxime analogs was synthesized and evaluated for JNK1-3 binding (Kd) and inhibition of cellular inflammatory responses. Compounds 4d (8-methoxyindolo[2,1-b]quinazolin-6,12-dione oxime) and 4e (8-phenylindolo[2,1-b]quinazolin-6,12-dione oxime) had high selectivity for JNK3 versus JNK1 and JNK2 and inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue cells and interleukin-6 (IL-6) production by MonoMac-6 monocytic cells in the low micromolar range. Likewise, compounds 4d, 4e, and pan-JNK inhibitor 4h (9-methylindolo[2,1-b]quinazolin-6,12-dione oxime) decreased LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. Molecular modeling suggested modes of binding interaction of these compounds in the JNK3 catalytic site that were in agreement with the experimental data on JNK3 binding. Our results demonstrate the potential for developing anti-inflammatory drugs based on these nitrogen-containing heterocyclic systems with selectivity for JNK3.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Lipopolisacáridos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Fosforilación , Oximas/farmacología , Oximas/química
2.
Molecules ; 28(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959750

RESUMEN

Echinacea purpurea (L.) Moench is a medicinal plant commonly used for the treatment of upper respiratory tract infections, the common cold, sore throat, migraine, colic, stomach cramps, and toothaches and the promotion of wound healing. Based on the known pharmacological properties of essential oils (EOs), we hypothesized that E. purpurea EOs may contribute to these medicinal properties. In this work, EOs from the flowers of E. purpurea were steam-distilled and analyzed by gas chromatography-mass spectrometry (GC-MS), GC with flame-ionization detection (GC-FID), and chiral GC-MS. The EOs were also evaluated for in vitro antimicrobial and innate immunomodulatory activity. About 87 compounds were identified in five samples of the steam-distilled E. purpurea EO. The major components of the E. purpurea EO were germacrene D (42.0 ± 4.61%), α-phellandrene (10.09 ± 1.59%), ß-caryophyllene (5.75 ± 1.72%), γ-curcumene (5.03 ± 1.96%), α-pinene (4.44 ± 1.78%), δ-cadinene (3.31 ± 0.61%), and ß-pinene (2.43 ± 0.98%). Eleven chiral compounds were identified in the E. purpurea EO, including α-pinene, sabinene, ß-pinene, α-phellandrene, limonene, ß-phellandrene, α-copaene, ß-elemene, ß-caryophyllene, germacrene D, and δ-cadinene. Analysis of E. purpurea EO antimicrobial activity showed that they inhibited the growth of several bacterial species, although the EO did not seem to be effective for Staphylococcus aureus. The E. purpurea EO and its major components induced intracellular calcium mobilization in human neutrophils. Additionally, pretreatment of human neutrophils with the E. purpurea EO or (+)-δ-cadinene suppressed agonist-induced neutrophil calcium mobilization and chemotaxis. Moreover, pharmacophore mapping studies predicted two potential MAPK targets for (+)-δ-cadinene. Our results are consistent with previous reports on the innate immunomodulatory activities of ß-caryophyllene, α-phellandrene, and germacrene D. Thus, this study identified δ-cadinene as a novel neutrophil agonist and suggests that δ-cadinene may contribute to the reported immunomodulatory activity of E. purpurea.


Asunto(s)
Antiinfecciosos , Echinacea , Aceites Volátiles , Humanos , Aceites Volátiles/química , Calcio , Vapor , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/química
3.
Molecules ; 28(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37764432

RESUMEN

The genus Saussurea has been used in the preparation of therapies for a number of medical problems, yet not much is known about the therapeutic high-molecular-weight compounds present in extracts from these plants. Since polysaccharides are important in immune modulation, we investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3, and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1-71.7%) and glucose (28.3-32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1-76.7%), glucose (11.8-19.2%), galactose (4.7-8.3%), and rhamnose (6.8-9.4%). Fractions SSP2, SSP6, and SFP2 stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide (LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1ß, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the modulation of leukocyte functions by polysaccharides.


Asunto(s)
Saussurea , Humanos , Animales , Ratones , Xilosa , Polisacáridos/farmacología , Interferón gamma , Lipopolisacáridos/farmacología , Glucosa
4.
Molecules ; 27(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956847

RESUMEN

Grindelia squarrosa (Pursh) Dunal is used in traditional medicine for treating various diseases; however, little is known about the immunomodulatory activity of essential oils from this plant. Thus, we isolated essential oils from the flowers (GEOFl) and leaves (GEOLv) of G. squarrosa and evaluated the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of these essential oils revealed that the main components were α-pinene (24.7 and 23.2% in GEOFl and GEOLv, respectively), limonene (10.0 and 14.7%), borneol (23.4 and 16.6%), p-cymen-8-ol (6.1 and 5.8%), ß-pinene (4.0 and 3.8%), bornyl acetate (3.0 and 5.1%), trans-pinocarveol (4.2 and 3.7%), spathulenol (3.0 and 2.0%), myrtenol (2.5 and 1.7%), and terpinolene (1.7 and 2.0%). Enantiomer analysis showed that α-pinene, ß-pinene, and borneol were present primarily as (-)-enantiomers (100% enantiomeric excess (ee) for (-)-α-pinene and (-)-borneol in both GEOFl and GEOLv; 82 and 78% ee for (-)-ß-pinene in GEOFl and GEOLv), while limonene was present primarily as the (+)-enantiomer (94 and 96 ee in GEOFl and GEOLv). Grindelia essential oils activated human neutrophils, resulting in increased [Ca2+]i (EC50 = 22.3 µg/mL for GEOFl and 19.4 µg/mL for GEOLv). In addition, one of the major enantiomeric components, (-)-borneol, activated human neutrophil [Ca2+]i (EC50 = 28.7 ± 2.6), whereas (+)-borneol was inactive. Since these treatments activated neutrophils, we also evaluated if they were able to down-regulate neutrophil responses to subsequent agonist activation and found that treatment with Grindelia essential oils inhibited activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, (-)-borneol inhibited FPR-agonist-induced Ca2+ influx in neutrophils. Grindelia leaf and flower essential oils, as well as (-)-borneol, also inhibited fMLF-induced chemotaxis of human neutrophils (IC50 = 4.1 ± 0.8 µg/mL, 5.0 ± 1.6 µg/mL, and 5.8 ± 1.4 µM, respectively). Thus, we identified (-)-borneol as a novel modulator of human neutrophil function.


Asunto(s)
Grindelia , Aceites Volátiles , Canfanos , Grindelia/química , Humanos , Limoneno/análisis , Neutrófilos , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química
5.
Molecules ; 27(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744876

RESUMEN

Persistent inflammation contributes to a number of diseases; therefore, control of the inflammatory response is an important therapeutic goal. In an effort to identify novel anti-inflammatory compounds, we screened a library of pyridazinones and structurally related derivatives that were used previously to identify N-formyl peptide receptor (FPR) agonists. Screening of the compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP1-Blue monocytic cells identified 48 compounds with anti-inflammatory activity. Interestingly, 34 compounds were FPR agonists, whereas 14 inhibitors of LPS-induced NF-κB activity were not FPR agonists, indicating that they inhibited different signaling pathways. Further analysis of the most potent inhibitors showed that they also inhibited LPS-induced production of interleukin 6 (IL-6) by human MonoMac-6 monocytic cells, again verifying their anti-inflammatory properties. Structure-activity relationship (SAR) classification models based on atom pair descriptors and physicochemical ADME parameters were developed to achieve better insight into the relationships between chemical structures of the compounds and their biological activities, and we found that there was little correlation between FPR agonist activity and inhibition of LPS-induced NF-κB activity. Indeed, Cmpd43, a well-known pyrazolone-based FPR agonist, as well as FPR1 and FPR2 peptide agonists had no effect on the LPS-induced NF-κB activity in THP1-Blue cells. Thus, some FPR agonists reported to have anti-inflammatory activity may actually mediate their effects through FPR-independent pathways, as it is suggested by our results with this series of compounds. This could explain how treatment with some agonists known to be inflammatory (i.e., FPR1 agonists) could result in anti-inflammatory effects. Further research is clearly needed to define the molecular targets of pyridazinones and structurally related compounds with anti-inflammatory activity and to define their relationships (if any) to FPR signaling events.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Antiinflamatorios/farmacología , Humanos , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Relación Estructura-Actividad
6.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203809

RESUMEN

Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.


Asunto(s)
Aceites Volátiles/química , Rhododendron/química , Flores/química , Células HL-60 , Humanos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/metabolismo , Inmunomodulación/efectos de los fármacos , Monoterpenos/farmacología , Neutrófilos/efectos de los fármacos , Aceites Volátiles/farmacología , Hojas de la Planta/química , Receptores de Formil Péptido/efectos de los fármacos , Receptores de Formil Péptido/metabolismo , Rhododendron/metabolismo , Sesquiterpenos/farmacología
7.
Molecules ; 26(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34577159

RESUMEN

c-Jun N-terminal kinase (JNK) plays a central role in stress signaling pathways implicated in important pathological processes, including rheumatoid arthritis and ischemia-reperfusion injury. Therefore, inhibition of JNK is of interest for molecular targeted therapy to treat various diseases. We synthesized 13 derivatives of our reported JNK inhibitor 11H-indeno[1,2-b]quinoxalin-11-one oxime and evaluated their binding to the three JNK isoforms and their biological effects. Eight compounds exhibited submicromolar binding affinity for at least one JNK isoform. Most of these compounds also inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) activation and interleukin-6 (IL-6) production in human monocytic THP1-Blue cells and human MonoMac-6 cells, respectively. Selected compounds (4f and 4m) also inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. We conclude that indenoquinoxaline-based oximes can serve as specific small-molecule modulators for mechanistic studies of JNKs, as well as potential leads for the development of anti-inflammatory drugs.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Oximas/química , Oximas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Disponibilidad Biológica , Línea Celular , Humanos , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/toxicidad , Monocitos/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Quinoxalinas/química , Quinoxalinas/farmacología
8.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34770992

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, cartilage damage and bone destruction. Although the pharmacological treatment of RA has evolved over the last few years, the new drugs have serious side effects and are very expensive. Thus, the research has been directed in recent years towards new possible targets. Among these targets, N-formyl peptide receptors (FPRs) are of particular interest. Recently, the mixed FPR1/FPR2 agonist Cpd43, the FPR2 agonist AT-01-KG, and the pyridine derivative AMC3 have been shown to be effective in RA animal models. As an extension of this research, we report here a new series of pyridinone derivatives containing the (substituted)phenyl acetamide chain, which was found to be essential for activity, but with different substitutions at position 5 of the scaffold. The biological results were also supported by molecular modeling studies and additional pharmacological tests on AMC3 have been performed in a rat model of RA, by repeating the treatments of the animals with 10 mg/kg/day of compound by 1 week.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Piridinas/farmacología , Receptores de Formil Péptido/agonistas , Administración Oral , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/metabolismo , Adyuvante de Freund , Humanos , Masculino , Estructura Molecular , Piridinas/administración & dosificación , Piridinas/química , Ratas , Ratas Sprague-Dawley , Células Tumorales Cultivadas
9.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946725

RESUMEN

Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos , Juniperus/química , Neutrófilos/inmunología , Aceites Volátiles/química , Sesquiterpenos Policíclicos , Células HL-60 , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Juniperus/clasificación , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología
10.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921479

RESUMEN

Synthetic and natural ionophores have been developed to catalyze ion transport and have been shown to exhibit a variety of biological effects. We synthesized 24 aza- and diaza-crown ethers containing adamantyl, adamantylalkyl, aminomethylbenzoyl, and ε-aminocaproyl substituents and analyzed their biological effects in vitro. Ten of the compounds (8, 10-17, and 21) increased intracellular calcium ([Ca2+]i) in human neutrophils, with the most potent being compound 15 (N,N'-bis[2-(1-adamantyl)acetyl]-4,10-diaza-15-crown-5), suggesting that these compounds could alter normal neutrophil [Ca2+]i flux. Indeed, a number of these compounds (i.e., 8, 10-17, and 21) inhibited [Ca2+]i flux in human neutrophils activated by N-formyl peptide (fMLF). Some of these compounds also inhibited chemotactic peptide-induced [Ca2+]i flux in HL60 cells transfected with N-formyl peptide receptor 1 or 2 (FPR1 or FPR2). In addition, several of the active compounds inhibited neutrophil reactive oxygen species production induced by phorbol 12-myristate 13-acetate (PMA) and neutrophil chemotaxis toward fMLF, as both of these processes are highly dependent on regulated [Ca2+]i flux. Quantum chemical calculations were performed on five structure-related diaza-crown ethers and their complexes with Ca2+, Na+, and K+ to obtain a set of molecular electronic properties and to correlate these properties with biological activity. According to density-functional theory (DFT) modeling, Ca2+ ions were more effectively bound by these compounds versus Na+ and K+. The DFT-optimized structures of the ligand-Ca2+ complexes and quantitative structure-activity relationship (QSAR) analysis showed that the carbonyl oxygen atoms of the N,N'-diacylated diaza-crown ethers participated in cation binding and could play an important role in Ca2+ transfer. Thus, our modeling experiments provide a molecular basis to explain at least part of the ionophore mechanism of biological action of aza-crown ethers.


Asunto(s)
Compuestos Aza/síntesis química , Compuestos Aza/farmacología , Éteres Corona/síntesis química , Éteres Corona/farmacología , Modelos Moleculares , Calcio/metabolismo , Quimiotaxis/efectos de los fármacos , Teoría Funcional de la Densidad , Células HL-60 , Humanos , Ligandos , Neutrófilos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Formil Péptido/metabolismo , Análisis de Regresión , Electricidad Estática , Termodinámica
11.
Bioorg Chem ; 100: 103880, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388428

RESUMEN

The resolution of inflammation is an active response involving the interaction of pro-resolving mediators with specific receptors, such as N-formyl peptide receptor 2 (FPR2). FPRs represent potentially important therapeutic targets for the treatment of some pathologies, including asthma and rheumatoid arthritis. Previously, we identified selective or mixed FPR agonists with a pyridazin-3(2H)-one scaffold, all containing a 4-bromophenylacetamide fragment at N-2. The most effective compounds in this series were EC3, a potent mixed FPR1/FPR2/FPR3 agonist, and EC10, which had a preference for FPR1. We report here a new series of pyridinone and pyrimidindione derivatives containing the 4-(bromophenyl)acetamide substituent that was essential for activity in the pyridazinone series. All new compounds were evaluated for FPR agonist activity in HL60 cells transfected with FPR1 or FPR2 and in human neutrophils. While most of the pyridinone derivatives had reasonable FPR agonist activity in the submicromolar/micromolar range, the pyrimidindione derivatives were less active. Compound 2a (N-(4-bromophenyl)-2-[3-cyano-5-(3-methoxyphenyl)-6-methyl-2-oxopyridin-1(2H)-yl]acetamide) was the most active pyridinone derivative and had a 10-fold preference for FPR2 (EC50 = 120 nM) versus FPR1 (EC50 = 1.6 µM). To assess their therapeutic activity, compounds 2a, EC3, and EC10 were evaluated in vivo using a rat model of rheumatoid arthritis. All three compounds increased the pain threshold and reduced pain hypersensitivity in the treated rats versus control rats, although 2a and EC10 were much more effective than EC3. Thus, these FPR agonists represent potential leads to develop for the treatment of inflammatory diseases such as rheumatoid arthritis.


Asunto(s)
Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Receptores de Formil Péptido/agonistas , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Línea Celular Tumoral , Células Cultivadas , Diseño de Fármacos , Humanos , Masculino , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Ratas Sprague-Dawley , Receptores de Formil Péptido/metabolismo
12.
Molecules ; 24(9)2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083328

RESUMEN

Organosulfur compounds are bioactive components of garlic essential oil (EO), mustard oil, Ferula EOs, asafoetida, and other plant and food extracts. Traditionally, garlic (Allium sativum) is used to boost the immune system; however, the mechanisms involved in the putative immunomodulatory effects of garlic are unknown. We investigated the effects of garlic EO and 22 organosulfur compounds on human neutrophil responses. Garlic EO, allyl propyl disulfide, dipropyl disulfide, diallyl disulfide, and allyl isothiocyanate (AITC) directly activated Ca2+ flux in neutrophils, with the most potent being AITC. Although 1,3-dithiane did not activate neutrophil Ca2+ flux, this minor constituent of garlic EO stimulated neutrophil reactive oxygen species (ROS) production. In contrast, a close analog (1,4-dithiane) was unable to activate neutrophil ROS production. Although 1,3-dithiane-1-oxide also stimulated neutrophil ROS production, only traces of this oxidation product were generated after a 5 h treatment of HL60 cells with 1,3-dithiane. Evaluation of several phosphatidylinositol-3 kinase (PI3K) inhibitors with different subtype specificities (A-66, TGX 221, AS605240, and PI 3065) showed that the PI3K p110δ inhibitor PI 3065 was the most potent inhibitor of 1,3-dithiane-induced neutrophil ROS production. Furthermore, 1,3-dithiane enhanced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase 3 α/ß (GSK-3α/ß), and cAMP response element binding (CREB) protein in differentiated neutrophil-like HL60 cells. Density functional theory (DFT) calculations confirmed the reactivity of 1,3-dithiane vs. 1,4-dithiane, based on the frontier molecular orbital analysis. Our results demonstrate that certain organosulfur compounds can activate neutrophil functional activity and may serve as biological response modifiers by augmenting phagocyte functions.


Asunto(s)
Factores Inmunológicos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Compuestos Orgánicos/farmacología , Compuestos de Azufre/farmacología , Compuestos Alílicos/farmacología , Antioxidantes/metabolismo , Disulfuros/farmacología , Ajo/química , Células HL-60 , Compuestos Heterocíclicos/farmacología , Humanos , Proteínas Quinasas Activadas por Mitógenos , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Quinoxalinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/farmacología , Tiazolidinedionas/farmacología
13.
Molecules ; 24(2)2019 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-30669433

RESUMEN

A variety of natural compounds have been shown to modulate T cell receptor (TCR) activation, including natural sesquiterpene lactones (SLs). In the present studies, we evaluated the biological activity of 11 novel semi-synthetic SLs to determine their ability to modulate TCR activation. Of these compounds, α -epoxyarglabin, cytisinyl epoxyarglabin, 1 ß ,10 α -epoxyargolide, and chloroacetate grosheimin inhibited anti-CD3-induced Ca2+ mobilization and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in Jurkat T cells. We also found that the active SLs depleted intracellular glutathione (GSH) in Jurkat T cells, supporting their reactivity towards thiol groups. Because the zeta-chain associated tyrosine kinase 70 kDa (ZAP-70) is essential for TCR signaling and contains a tandem SH2 region that is highly enriched with multiple cysteines, we performed molecular docking of natural SLs and their semi-synthetic derivatives into the ZAP-70 binding site. The docking showed that the distance between the carbon atom of the exocyclic methylene group and the sulfur atom in Cys39 of the ZAP-70 tandem SH2 module was 3.04⁻5.3 Å for active compounds. Furthermore, the natural SLs and their derivatives could be differentiated by their ability to react with the Cys39 SH-group. We suggest that natural and/or semi-synthetic SLs with an α -methylene- γ -lactone moiety can specifically target GSH and the kinase site of ZAP-70 and inhibit the initial phases of TCR activation.


Asunto(s)
Glutatión/metabolismo , Lactonas/metabolismo , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Sesquiterpenos/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Comunicación Celular , Humanos , Células Jurkat , Lactonas/síntesis química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Sesquiterpenos/síntesis química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
14.
Molecules ; 23(7)2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996498

RESUMEN

Essential oils (EOs) were obtained by hydrodistillation of various parts of Ferula ovina (Boiss.) Boiss., Ferula iliensis Krasn. ex. Korovin, and Ferula akitschkensis B. Fedtsch. ex Koso-Pol., collected in the flowering/budding and fruiting stages. Eight samples of EOs isolated from F. ovina and four samples from F. akitsckensis were analyzed by gas chromatography⁻mass spectrometry (GC-MS). The major constituents of F. ovina EOs were α-pinene (6.9⁻47.8%), ß-pinene (1.5⁻7.1%), sabinene (0.1⁻20.5%), ß-phellandrene (0⁻6.5%), trans-verbenol (0.9⁻7.4%), eremophilene (3.1⁻12%), and 6Z-2,5,5,10-tetramethyl-undeca-2,6,9-trien-8-one (0⁻13.7%). The major constituents of F. akitsckensis EOs were α-pinene (0⁻46.2%), ß-pinene (0⁻47.9%), sabinene (0⁻28.3%), eremophilene (0⁻10.6), ß-caryophyllene (0⁻7.5%), himachalen-7-ol (0⁻28.2%), and an himachalol derivative (0⁻8.3%). Samples of EOs from F. ovina, F. iliensis, and F. akitsckensis were evaluated for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) pulse-field gel electrophoresis type USA300 (LAC). EOs from F. ovina exhibited the highest antibacterial activity compared to samples from other Ferula spp., with the most potent EOs being isolated from roots at the flowering and fruiting stages and stems at the fruiting stage (IC50 values of 19.1, 20.9, and 22.9 µg/mL, respectively). Although EOs demonstrated concentration-dependent inhibition of MRSA growth, analysis of the major constituents (α-pinene, ß-pinene, and sabinene) showed that they had low activity, suggesting that other components were likely responsible for the observed bioactivity of the unfractionated EOs. Indeed, correlation of the GC-MS data with antibacterial activity suggested that the putative components responsible for antibacterial activity were, either individually or in combination, eremophilene and trans-verbenol. Overall, these results suggest that the EOs from F. ovina could have potential for use as alternative remedies for the treatment of infectious diseases caused by MRSA.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ferula/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Modelos Lineales , Pruebas de Sensibilidad Microbiana
15.
Drug Dev Res ; 78(1): 49-62, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27859446

RESUMEN

Preclinical Research Formyl peptide receptors (FPRs) are G-protein-coupled receptors that play an important role in the regulation of inflammatory process and cellular dysfunction. In humans, three different isoforms are expressed (FPR1, FPR2, and FPR3). FPR2 appears to be directly involved in the resolution of inflammation, an active process carried out by specific pro-resolving mediators that modulate specific receptors. Previously, we identified 2-arylacetamido pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of mixed-agonists for the three isoforms. Here, we report a new series of 2-arylacetamido pyridazinones substituted at position 5 and their development as FPR agonists. We also synthesized a new series of 2-oxothiazolones bearing a 4-bromophenylacetamido fragment, which was fundamental for activity in the pyridazinone series. The compounds of most interest were 4a, a potent, mixed FPR agonist recognized by all three isotypes (FPR1 EC50 = 19 nM, FPR2 EC50 = 43 nM, FPR3 EC50 = 40 nM), and 4b, which had potent activity and a preference for FPR2 (EC50 = 13 nM). These novel compounds may represent valuable tools for studying FPR activation and signaling. Drug Dev Res 78 : 49-62, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Compuestos Heterocíclicos/síntesis química , Receptores de Formil Péptido/agonistas , Animales , Células Cultivadas , Compuestos Heterocíclicos/química , Humanos , Ratones , Modelos Moleculares , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-27134116

RESUMEN

N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that play key roles in modulating immune cells. FPRs represent potentially important therapeutic targets for the development of drugs that could enhance endogenous anti-inflammation systems associated with various pathologies, thereby reducing the progression of inflammatory conditions. Previously, we identified 2-arylacetamide pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of FPR1/FPR2-dual agonists and several mixed-agonists for the three FPR isoforms. Here, we report a new series of 2-arylacetamido-4-aniline pyridazin-3(2H)-ones substituted in position 5 as a further development of these FPR agonists. Chemical manipulation presented in this work resulted in mixed FPR agonists 8a, 13a and 27b, which had EC50 values in nanomolar range. In particular, compound 8a showed a preference for FPR1 (EC50=45nM), while 13a and 27b showed a moderate preference for FPR2 (EC50=35 and 61nM, respectively). Thus, these compounds may represent valuable tools for studying FPR activation and signaling.

17.
Phytother Res ; 30(8): 1287-97, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27215200

RESUMEN

Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, antibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Epilobium/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Polifenoles/química , Humanos
18.
Drug Dev Res ; 77(6): 285-99, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27474878

RESUMEN

Preclinical Research A number of N-benzoylindoles were designed and synthesized as deaza analogs of previously reported potent and selective HNE inhibitors with an indazole scaffold. The new compounds containing substituents and functions that were most active in the previous series were active in the micromolar range (the most potent had IC50 = 3.8 µM) or inactive. These results demonstrated the importance of N-2 in the indazole nucleus. Docking studies performed on several compounds containing the same substituents but with an indole or an indazole scaffold, respectively, highlight interesting aspects concerning the molecule orientation and H-bonding interactions, which could help to explain the lower activity of this new series. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Indoles/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Proteínas Inhibidoras de Proteinasas Secretoras/farmacología , Humanos , Enlace de Hidrógeno , Indoles/síntesis química , Indoles/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Proteínas Inhibidoras de Proteinasas Secretoras/síntesis química , Proteínas Inhibidoras de Proteinasas Secretoras/química , Relación Estructura-Actividad
19.
J Pharmacol Exp Ther ; 353(3): 505-16, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25784649

RESUMEN

c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1ß in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Oximas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinoxalinas/farmacología , Animales , Anticuerpos/análisis , Artritis Experimental/inmunología , Artritis Experimental/patología , Sitios de Unión/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Articulaciones/patología , Masculino , Metaloproteinasas de la Matriz/biosíntesis , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Oximas/uso terapéutico , Quinoxalinas/uso terapéutico , Líquido Sinovial/citología , Líquido Sinovial/metabolismo , Linfocitos T Reguladores/efectos de los fármacos
20.
Bioorg Med Chem Lett ; 25(11): 2280-4, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25933594

RESUMEN

Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation.


Asunto(s)
Ácidos Borónicos/química , Niacinamida/análogos & derivados , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Animales , Ácidos Borónicos/uso terapéutico , Biología Computacional , Diseño de Fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/tratamiento farmacológico , Estructura Molecular , Niacinamida/química , Niacinamida/uso terapéutico , Ozono/toxicidad , Ratas , Ratas Sprague-Dawley , Receptores de Interleucina-8B/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA