Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 10(4): 1446-53, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14977848

RESUMEN

PURPOSE: Combretastatin A4 phosphate (CA4P) and its structural analog, combretastatin A1 phosphate (CA1P), are soluble prodrugs capable of interacting with tubulin and causing rapid vascular shutdown within tumors. CA4P has completed Phase I clinical trials, but recent preclinical studies have shown that CA1P displays a greater antitumor effect than the combretastatin A4 (CA4) analog at equal doses. The aim of this study, therefore, is to compare pharmacokinetics and metabolism of the two compounds to determine whether pharmacokinetics plays a role in their differential activity. EXPERIMENTAL DESIGN: NMRI mice bearing MAC29 tumors received injection with either CA4P or CA1P at a therapeutic dose of 150 mg x kg(-1), and profiles of both compounds and their metabolites analyzed by a sensitive and specific liquid chromatography/mass spectroscopy method. RESULTS: The metabolic profile of both compounds is complex, with up to 14 metabolites being detected for combretastatin A1 (CA1) in the plasma. Many of these metabolites have been identified by liquid chromatography/mass spectroscopy. Initial studies, however, focused on the active components CA4 and CA1, where plasma and tumor areas under the curve were 18.4 and 60.1 microg x h x ml(-1) for CA4, and 10.4 and 13.1 microg x h x ml(-1) for CA1, respectively. In vitro metabolic comparisons of the two compounds strongly suggest that CA1 is metabolized to a more reactive species than the CA4. CONCLUSIONS: Although in vitro studies suggest that variable rates of tumor-specific prodrug dephosphorylation may explain these differences in pharmacokinetics profiles, the improved antitumor activity and altered pharmacokinetic profile of CA1 may be due to the formation of a more reactive metabolite.


Asunto(s)
Bibencilos/farmacología , Estilbenos/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Área Bajo la Curva , Calibración , Línea Celular Tumoral , Cromatografía , Cromatografía Líquida de Alta Presión , Colorantes/farmacología , Femenino , Humanos , Concentración 50 Inhibidora , Espectrometría de Masas , Ratones , Modelos Químicos , Fosforilación , Profármacos , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Factores de Tiempo
2.
Neoplasia ; 6(6): 777-85, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15720804

RESUMEN

Matrix metalloproteinase (MMP)-mediated degradation of the extracellular matrix is a major factor for tumor development and expansion. This study analysed MMP-10 protein expression and activity in human lung tumors of various grade, stage, and type to address the relationship between MMP-10 and tumor characteristics and to evaluate MMP-10 as a therapeutic target in non small cell lung carcinoma (NSCLC). Unlike the majority of MMPs, MMP-10 was located in the tumor mass as opposed to tumor stroma. MMP-10 protein was observed at low levels in normal human lung tissues and at significantly higher levels in all types of NSCLC. No correlation was observed between MMP-10 protein expression and tumor type, stage, or lymph node invasion. To discriminate between active and inactive forms of MMP-10 in samples of human NSCLC, we have developed an ex vivo fluorescent assay. Measurable MMP-10 activity was detected in 42 of 50 specimens of lung cancer and only 2 of 10 specimens of histologically normal lung tissue. No relationship was observed between MMP-10 activity levels and clinicopathologic characteristics. Our results suggest that MMP-10 is expressed and active at high levels in human NSCLC compared to normal lung tissues, and, as such, is a potential target for the development of novel therapeutics for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Metaloendopeptidasas/metabolismo , Animales , Biomarcadores de Tumor/análisis , Línea Celular Tumoral , Activación Enzimática/fisiología , Humanos , Inmunohistoquímica , Metaloproteinasa 10 de la Matriz , Ratones , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA