Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(4): 2135-2141, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210512

RESUMEN

Stacked-ring aromaticity arising from the close stacking of antiaromatic π-systems has recently received considerable attention. Here, we realize stacked-ring aromaticity via a rational supramolecular approach. A nanocapsule composed of bent polyaromatic amphiphiles was employed to encapsulate several antiaromatic norcorrole Ni(II) complexes (NCs) in water. The resulting micellar capsules display high stability toward heating and concentration change. The encapsulation resulted in the appearance of a broad absorption band in the near-infrared region, which is characteristic of norcorroles with close face-to-face stacking. Importantly, a meso-isopropyl NC, which does not exhibit π-stacking even in a concentrated solution or the crystalline phase, adopted π-stacking with stacked-ring aromaticity in the supramolecular micellar capsule.

2.
Chemistry ; 29(65): e202302181, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37658627

RESUMEN

Supramolecular polymers are formed through nucleation (i. e., initiation) and polymerization processes, and kinetic control over the nucleation process has recently led to the realization of living supramolecular polymerization. Changing the viewpoint, herein we focus on controlling the polymerization process, which we expect to pave the way to further developments in controlled supramolecular polymerization. In our previous study, two-dimensional living supramolecular polymerization was used to produce supramolecular nanosheets with a controlled area; however, these had rough edges. In this study, the growth of the nanosheets was controlled by using a 'dummy' monomer to produce supramolecular nanosheets with smoothed edges.

3.
Chemistry ; 28(69): e202202075, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36094055

RESUMEN

π-π Interactions are established as a powerful supramolecular tool, whereas the usability of CH-π interactions has been rather limited so far. Here we present (i) selective binding of planar polyaromatics and (ii) effective isolation of planar metal complexes by a polyaromatic capsule, utilizing multiple CH-π interactions. In the spheroidal cavity, one molecule of large and medium-sized polyaromatic molecules (i. e., coronene and pyrene) is exclusively bound from mixtures bearing the same number of aromatic CH groups. Theoretical studies reveal that multiple host-guest CH-π interactions (up to 32 interactions) are the predominant driving force for the observed selectivity. In addition, one molecule of planar metal complexes (i. e., porphine and bis(acetylacetonato) Cu(II) complexes) is quantitatively bound by the capsule through aromatic and aliphatic CH-π multi-interactions, respectively. The ESR and theoretical studies demonstrate the isolation capability of the capsular framework and an unusual polar environment in the polyaromatic cavity.


Asunto(s)
Complejos de Coordinación
4.
Angew Chem Int Ed Engl ; 60(19): 10552-10556, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33635566

RESUMEN

A nanocapsule composed of multiple carbazole panels (ca. 12 panels) was quantitatively generated from bent carbazole-based amphiphiles in water. Unlike previously reported macrocycles and coordination cages bearing several carbazole panels, the resultant nanocapsule displays enhanced emissivity and improved electrochemical stability as compared with the monomeric amphiphile. The spectroscopic properties of substituted coumarin and boron-dipyrromethene dyes can be modulated upon encapsulation by the nanocapsule in water. In the cavity, a highly blue-shifted absorption band is observed from largely twisted coumarin dyes and two absorption bands are found from boron-dipyrromethene dimers stacked in an unusual L-shaped fashion. Moreover, the encapsulated dimers exhibit unique excimer-like emission.

5.
Angew Chem Int Ed Engl ; 60(33): 17915-17919, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34018299

RESUMEN

Catalyst- and reagent-free reactions are powerful tools creating various functional molecules and materials. However, such chemical bonds are usually hydrolysable or require specific functional groups, which limits their use in aqueous media. Herein, we report the development of new amphiphiles through the Staudinger reaction. Simple mixing of chlorinated aryl azide with a hydrophilic moiety and various triarylphosphines (PAr3) gave rise to azaylide-based amphiphiles NPAr3, rapidly and quantitatively. The obtained NPAr3 formed ca. 2 nm-sized spherical aggregates (NPAr3)n in water. The hydrolysis of NPAr3 was significantly suppressed as compared with those of non-chlorinated amphiphiles nNPAr3. Computational studies revealed that the stability is mainly governed by the decrease in LUMO around the phosphorus atom owing to the o-substituted halogen groups. Furthermore, hydrophobic dyes such as Nile red and BODIPY were encapsulated by the spherical aggregates (NPAr3)n in water.

6.
J Am Chem Soc ; 142(21): 9599-9603, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32369355

RESUMEN

Anisotropic contraction of a spherical polyaromatic capsule was demonstrated through simple meta-to-ortho modification of the bent polyaromatic ligands. The resultant capsule, composed of two metal ions and four ortho-substituted ligands, possesses a spheroidal cavity (1.1 nm × 1.5 nm × 1.5 nm) fully encircled by a polyaromatic framework. One large planar or bowl-shaped molecule (e.g., porphine or sumanene) is quantitatively bound by the capsule, in which the cavity-induced compression effect causes the acceleration of the bowl-to-bowl inversion of sumanene. Temperature-dependent 1H NMR analysis revealed that the activation energy of the inversion decreases greatly (ΔG⧧ = -2.8 kcal mol-1 at 318 K) upon encapsulation, whereas the opposite effect was observed in the spherical cavity of the previous polyaromatic capsule.

7.
Chem Sci ; 13(29): 8642-8648, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35974766

RESUMEN

Host-guest structures and properties have been widely studied using relatively small dyes (<1 nm) without bulky groups, due to their smooth incorporation, efficient host-guest interactions, and high analytical accessibility. In this report, on the other hand, three types of sterically demanding organic dyes trapped by a polyaromatic cage were investigated by spectroscopic analyses on the basis of supramolecular interactions. Coumarins with two bulky substituents are bound by the cage in aqueous solution. The resultant caged dyes show unusual emission enhancement, depending on the difference of a single heteroatom in their substituents. The color of perylene bisimides with two bulky substituents is remarkably changed from yellow to red upon caging. This peculiarity stems from the twist of the substituents in the cage, revealed by the combination of absorption and theoretical studies. Furthermore, tetrasubstituted, bulky porphyrins are caught by the cage in aqueous solution. The caged bulky dyes also display altered color and absorption properties, which remain intact even under acidic conditions. In contrast to typical covalent functionalization and previous host-guest studies toward small and non-bulky dyes, the unusual, non-covalent spectroscopic modulation of the large and bulky dyes can be accomplished for the first time by the present cage, featuring a prolate polyaromatic framework with four openings.

8.
Nat Commun ; 10(1): 1948, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019192

RESUMEN

Molecular containers that provide both stimuli-responsive assembly/disassembly properties and wide-ranging host capabilities in aqueous medium still remain a current synthetic challenge. Herein we report polyaromatic nanocapsules assembled from V-shaped amphiphilic molecules bearing a photoresponsive ortho-dianthrylbenzene unit in water. Unlike previously reported supramolecular capsules and cages, the nanocapsules quickly and quantitatively disassemble into monomeric species by a non-invasive light stimulus through structural conversion from the open to the closed form of the amphiphiles. Regeneration of the nanocapsules is demonstrated by light irradiation or heating of the closed amphiphiles. With the aid of the wide-ranging host capability, the photo-induced release of various encapsulated guest molecules (e.g., Nile red, Cu(II)-phthalocyanine, and fullerene C60) can be achieved by using the present nanocapsule in water. This feature can furthermore be utilized to switch the fluorescence of encapsulated coumarin guests through their controlled release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA