Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Connect Tissue Res ; 62(6): 671-680, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33153311

RESUMEN

Purpose/Aim: Expanded, human connective tissue cells can adopt mesenchymal stromal cell (MSC) properties that are favorable for applications in regenerative medicine. Sheep are used as a large animal model for cell therapies, although for preclinical testing it is important to establish whether ovine cells resemble humans in their tendency to adopt MSC properties. The objective of this study was to investigate whether cells from five ovine connective tissues are MSC-like in their propensity for extensive expansion and immunophenotype.Materials and Methods: Monolayer cultures were established with cells from annulus fibrosus, cartilage, meniscus, tendon, and nucleus pulposus. Bone marrow MSCs were evaluated as a control. Cultures were seeded at 500 cells/cm2, and subcultured every 5 days up to day 20. Flow cytometry was used to evaluate expression of cluster of differentiation (CD) molecules associated with MSCs (29, 44, 166). Colony formation was evaluated using time-lapse imaging of individual cells.Results: By day 20, cumulative population doublings ranged between 22 (chondrocytes) and 27 (MSCs). All cells uniformly expressed CD44 and 73. Expression of CD166 for MSCs was 98-99%, and ranged between 64 and 97% for the other cell types. Time-lapse imaging demonstrated that 58-94% of the cells colonized as indicated by 3 population doublings within 52 hours.Conclusions: Cells from ovine connective tissues resembled MSCs in their propensity for sustained, colony-forming growth and expression of CD molecules. These data supports the potential for preclinical testing of MSC-like connective tissue cells in sheep.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos , Citometría de Flujo , Inmunofenotipificación , Medicina Regenerativa , Ovinos
2.
Vet Surg ; 43(3): 255-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24433318

RESUMEN

OBJECTIVE: To report outcome of horses with femorotibial lesions (meniscal, cartilage or ligamentous) treated with surgery and intra-articular administration of autologous bone marrow derived mesenchymal stem cells (BMSCs). STUDY DESIGN: Prospective case series. ANIMALS: Horses (n = 33). METHODS: Inclusion criteria included horses that had lameness localized to the stifle by diagnostic anesthesia, exploratory stifle arthroscopy and subsequent intra-articular administration of autologous BMSCs. Case details and follow-up were gathered from medical records, owner, trainer or veterinarian. Outcome was defined as returned to previous level of work, returned to work, or failed to return to work. RESULTS: Follow-up (mean, 24 months) was obtained; 43% of horses returned to previous level of work, 33% returned to work, and 24% failed to return to work. In horses with meniscal damage (n = 24) a higher percentage in the current study (75%) returned to some level of work compared to those in previous reports (60-63%) that were treated with arthroscopy alone, which resulted in a statistically significant difference between studies (P = .038). Joint flare post injection was reported in 3 horses (9.0%); however, no long-term effects were noted. CONCLUSIONS: Intra-articular administration of BMSC postoperatively for stifle lesions appeared to be safe, with morbidity being similar to that of other biologic agents. Improvement in ability to return to work may be realized with BMSC treatment compared to surgery alone in horses with stifle injury.


Asunto(s)
Células de la Médula Ósea/fisiología , Caballos/lesiones , Trasplante de Células Madre Mesenquimatosas/veterinaria , Células Madre Mesenquimatosas/fisiología , Rodilla de Cuadrúpedos/lesiones , Animales , Artroscopía/veterinaria , Femenino , Estudios de Seguimiento , Cojera Animal/fisiopatología , Cojera Animal/terapia , Masculino , Cuidados Posoperatorios/métodos , Cuidados Posoperatorios/normas , Cuidados Posoperatorios/veterinaria , Estudios Prospectivos , Resultado del Tratamiento
3.
BMC Musculoskelet Disord ; 14: 54, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23374282

RESUMEN

BACKGROUND: It is well documented that osteoarthritis (OA) can develop following traumatic joint injury and is the leading cause of lameness and subsequent wastage of equine athletes. Although much research of injury induced OA has focused on cartilage, OA is a disease that affects the whole joint organ. METHODS: In this study, we investigated the impact of synovial cells on the progression of an OA phenotype in injured articular cartilage. Injured and control cartilage were cultured in the presence of synoviocytes extracted from normal equine synovium. Synoviocytes and cartilage were evaluated for catabolic and anabolic gene expression. The cartilage was also evaluated histologically for loss of extracellular matrix molecules, chondrocyte cell death and chondrocyte cluster formation. RESULTS: The results indicate synoviocytes exert both positive and negative effects on injured cartilage, but ultimately protect injured cartilage from progressing toward an OA phenotype. Synoviocytes cultured in the presence of injured cartilage had significantly reduced expression of aggrecanase 1 and 2 (ADAMTS4 and 5), but also had increased expression of matrix metalloproteinase (MMP) -1 and reduced expression of tissue inhibitor of metalloproteinases 1 (TIMP-1). Injured cartilage cultured with synoviocytes had increased expression of both collagen type 2 and aggrecanase 2. Histologic examination of cartilage indicated that there was a protective effect of synoviocytes on injured cartilage by reducing the incidence of both focal cell loss and chondrocyte cluster formation, two major hallmarks of OA. CONCLUSIONS: These results support the importance of evaluating more than one synovial joint tissue when investigating injury induced OA.


Asunto(s)
Cartílago Articular/citología , Cartílago Articular/lesiones , Rodilla de Cuadrúpedos/citología , Rodilla de Cuadrúpedos/lesiones , Líquido Sinovial/citología , Animales , Células Cultivadas , Condrocitos/fisiología , Técnicas de Cocultivo , Caballos , Líquido Sinovial/fisiología
4.
Cartilage ; 13(1): 19476035221081465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35225009

RESUMEN

OBJECTIVE: Shoulder pain is commonly attributed to rotator cuff injury or osteoarthritis. Ovine translational models are used to investigate novel treatments aimed at remedying these conditions to prevent articular cartilage degeneration and subsequent joint degradation. However, topographical properties of articular cartilage in the ovine shoulder are undefined. This study investigates the biomechanical, morphological, and biochemical attributes of healthy ovine humeral head articular cartilage and characterizes topographical variations between surface locations. DESIGN: Ten humeral heads were collected from healthy skeletally mature sheep and each was segregated into 4 quadrants using 16 regions of interest (ROIs) across the articular surface. Articular cartilage of each ROI was analyzed for creep indentation, thickness, and sulfated glycosaminoglycan (sGAG) and collagen quantity. Comparisons of each variable were made between quadrants and between ROIs within each quadrant. RESULTS: Percent creep, thickness, and sGAG content, but not collagen content, were significantly different between humeral head quadrants. Subregion analysis of the ROIs within each surface quadrant revealed differences in all measured variables within at least one quadrant. Percent creep was correlated with sGAG (r = -0.32, P = 0.0001). Collagen content was correlated with percent creep (r = 0.32, P = 0.0009), sGAG (r = -0.19, P = 0.049), and thickness (r = -0.19, P = 0.04). CONCLUSIONS: Topographical variations exist in mechanical, morphologic, and biochemical properties across the articular surface of the ovine humeral head. Recognizing this variability in ovine humeral head cartilage will provide researchers and clinicians with accurate information that could impact study outcomes.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Fenómenos Biomecánicos , Cartílago Articular/anatomía & histología , Colágeno , Cabeza Humeral/química , Ovinos
5.
Front Vet Sci ; 9: 907616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812845

RESUMEN

Background: Allogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation. Objectives: To investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation. Study Design: Randomized positively and negatively controlled experimental study. Method: In phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology. Results: In phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs. Main Limitations: This study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control. Conclusions: In this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment.

6.
Arthroscopy ; 27(11): 1552-61, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21862278

RESUMEN

PURPOSE: This study evaluated intra-articular injection of bone marrow-derived mesenchymal stem cells (BMSCs) to augment healing with microfracture compared with microfracture alone. METHODS: Ten horses (aged 2.5 to 5 years) had 1-cm2 defects arthroscopically created on both medial femoral condyles of the stifle joint (analogous to the human knee). Defects were debrided to subchondral bone followed by microfracture. One month later, 1 randomly selected medial femorotibial joint in each horse received an intra-articular injection of either 20 × 10(6) BMSCs with 22 mg of hyaluronan or 22 mg of hyaluronan alone. Horses were confined for 4 months, with hand walking commencing at 2 weeks and then increasing in duration and intensity. At 4 months, horses were subjected to strenuous treadmill exercise simulating race training until completion of the study at 12 months. Horses underwent musculoskeletal and radiographic examinations bimonthly and second-look arthroscopy at 6 months. Horses were euthanized 12 months after the defects were made, and the affected joints underwent magnetic resonance imaging and gross, histologic, histomorphometric, immunohistochemical, and biochemical examinations. RESULTS: Although there was no evidence of any clinically significant improvement in the joints injected with BMSCs, arthroscopic and gross evaluation confirmed a significant increase in repair tissue firmness and a trend for better overall repair tissue quality (cumulative score of all arthroscopic and gross grading criteria) in BMSC-treated joints. Immunohistochemical analysis showed significantly greater levels of aggrecan in repair tissue treated with BMSC injection. There were no other significant treatment effects. CONCLUSIONS: Although there was no significant difference clinically or histologically in the 2 groups, this study confirms that intra-articular BMSCs enhance cartilage repair quality with increased aggrecan content and tissue firmness. CLINICAL RELEVANCE: Clinical use of BMSCs in conjunction with microfracture of cartilage defects may be potentially beneficial.


Asunto(s)
Artroplastia Subcondral , Trasplante de Médula Ósea , Cartílago/lesiones , Cartílago/cirugía , Traumatismos de la Rodilla/cirugía , Trasplante de Células Madre Mesenquimatosas , Procedimientos Ortopédicos/métodos , Cicatrización de Heridas , Animales , Artroscopía , Cartílago/patología , Cartílago/fisiología , Terapia Combinada , Caballos , Ácido Hialurónico/uso terapéutico , Inyecciones Intraarticulares , Fracturas Intraarticulares , Traumatismos de la Rodilla/diagnóstico por imagen , Traumatismos de la Rodilla/patología , Imagen por Resonancia Magnética , Modelos Animales , Radiografía , Distribución Aleatoria , Método Simple Ciego , Rodilla de Cuadrúpedos/lesiones , Rodilla de Cuadrúpedos/fisiología , Membrana Sinovial/patología , Resultado del Tratamiento , Viscosuplementos/uso terapéutico
7.
Am J Sports Med ; 49(12): 3404-3413, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34398643

RESUMEN

BACKGROUND: Umbilical cord (UC) connective tissues contain plastic-adherent, colony forming unit-fibroblasts (CFU-Fs) amenable to culture expansion for potential therapeutic use. Recently, UC-derived allograft products have been made available to practitioners in orthopaedics and other specialties, by companies purporting "stem cell"-based healing. However, such marketing claims conflict with existing regulations for these human tissues, generating questions over the cellular and protein composition of current commercially available UC allograft products. PURPOSE: To evaluate commercial UC allograft products for viable cells, CFU-Fs, and protein makeup. STUDY DESIGN: Descriptive laboratory study. METHODS: Five commercial UC allograft products claiming to contain viable, undescribed "stem cells," 2 obtained from UC blood (UCB) and 3 from UC tissue (UCT), were analyzed. Image-based methods were used to measure cell concentration and viability, a traditional CFU-F assay was used to evaluate in vitro behavior indicative of a connective tissue progenitor cell phenotype often referred to as mesenchymal stem/stromal cells, and quantitative immunoassay arrays were used to measure a combination of cytokines and growth factors. Bone marrow concentrate (BMC) and plasma derived from the blood and bone marrow of middle-aged individuals served as comparative controls for cell culture and protein analyses, respectively. RESULTS: Viable cells were identified within all 5 UC allograft products, with those derived from UCB having greater percentages of living cells (40%-59%) than those from UCT (1%-22%). Compared with autologous BMC (>95% viability and >300 million living cells), no CFU-Fs were observed within any UC allograft product (<15 million living cells). Moreover, a substantial number of proteins, particularly those within UCB allograft products, were undetectable or present at lower concentrations compared with blood and bone marrow plasma controls. Interestingly, several important growth factors and cytokines, including basic fibroblast growth factor, hepatocyte growth factor, interleukin-1 receptor antagonist, and osteoprotegerin, were most prevalent in 1 or more UCT allograft products as compared with blood and bone marrow plasma. CONCLUSION: CFU-Fs, often referred to as stem cells, were not found within any of the commercial UC allograft products analyzed, and clinicians should remain wary of marketing claims stating otherwise. CLINICAL RELEVANCE: Any therapeutic benefit of current UC allograft products in orthopaedic medicine is more likely to be attributed to their protein composition (UCT > UCB) or inclusion of cells without colony forming potential (UCB > UCT).


Asunto(s)
Sangre Fetal , Cordón Umbilical , Aloinjertos , Técnicas de Cultivo de Célula , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Humanos , Persona de Mediana Edad
8.
J Orthop Res ; 39(4): 780-787, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32833239

RESUMEN

The knee is the most common site for translational cartilage research in sheep, though topographic features of articular cartilage across surfaces are unspecified. We aimed to characterize the mechanical, morphological, and biochemical properties of articular cartilage across ovine knee surfaces and document variations between and within surface locations. Regions of interest (ROIs) were delineated across surfaces of 10 healthy ovine knees. Articular cartilage at each ROI was measured for creep indentation, thickness, and glycosaminoglycan (GAG) and collagen content. Variables were compared between surface locations (trochlea, and lateral [LFC] and medial [MFC] femoral condyles) and between ROIs within each surface location. Correlations between variables were also assessed. Articular surface location had a significant effect on creep (P < .0001), thickness (P < .0001), and collagen (P = .0007), but not GAG (P = .28). Significant differences in percent creep between ROIs were found within the LFC (P < .0001), MFC (P < .0001), and trochlea (P = .0002). Cartilage thickness was different between ROIs within the LFC, MFC, and trochlea (all P < .0001). The LFC (P = .002) and trochlea (P = .01) each had significant differences in GAG between ROIs. Collagen content between ROIs was different within the LFC (P = .0003), MFC (P = .0005), and trochlea (P < .0001). Collagen content was correlated with thickness (r = -.55), percent creep (r = .47), and GAG (r = -.21). Percent creep was correlated with thickness (r = -.64) and GAG (r = -.19). Topographic variations in mechanical, morphological, and biochemical properties exist across knee cartilage surfaces in sheep. Recognition of this variability is important to optimize study protocols and improve accuracy of results.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Cartílago Articular/fisiología , Miembro Posterior/fisiología , Animales , Fenómenos Biomecánicos , Colágeno/química , Femenino , Fémur/diagnóstico por imagen , Fémur/fisiología , Glicosaminoglicanos/química , Miembro Posterior/anatomía & histología , Húmero/diagnóstico por imagen , Húmero/fisiología , Ovinos , Estrés Mecánico , Microtomografía por Rayos X
9.
Arch Biochem Biophys ; 494(2): 138-44, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19944061

RESUMEN

Knee osteoarthritis is accelerated by damage to the meniscus, a fibrocartilage tissue that assists in load transmission. However, little is known about the mechanical or cellular response of the meniscus to injurious overloading. Here, in vitro studies explored injury to meniscal explants using a compressive overloading protocol that has been well characterized for articular cartilage. Cartilage samples were processed in parallel as a reference to the extensive literature on cartilage injury. Injured meniscal explants showed extensive cell death at the articulating surface but no gross tissue damage, while similar conditions of peak stress and strain resulted in cartilage surface fissures and cell death consistent with moderate overloading. Post-injury gene expression in meniscal explants indicated a decrease in seven of the nine catabolic and pro-inflammatory molecules surveyed, while cartilage experienced a downregulation in ADAMTS-5 and TNF-alpha only. These data demonstrated a resiliency of the meniscus to injury, and that an acute increase in catabolic activities is not necessarily a consequence of mechanical overloading.


Asunto(s)
Cartílago Articular/patología , Meniscos Tibiales/patología , Estrés Mecánico , Lesiones de Menisco Tibial , Animales , Fenómenos Biomecánicos , Cartílago Articular/metabolismo , Cartílago Articular/fisiopatología , Bovinos , Supervivencia Celular , Regulación hacia Abajo , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Inflamación/metabolismo , Meniscos Tibiales/metabolismo , Meniscos Tibiales/fisiopatología , Estándares de Referencia
10.
Biomacromolecules ; 11(10): 2629-39, 2010 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-20795698

RESUMEN

It is generally accepted that both surface chemistry and biochemical cues affect mesenchymal stem cell (MSC) proliferation and differentiation. Several growth factors that have strong influences on MSC behavior bind to glycosaminoglycans in interactions that affect their stability and their biochemical activity. The goal of this work was to develop polysaccharide-based polyelectrolyte multilayers (PEMs) to bind and stabilize growth factors for delivery to MSCs. Using the naturally derived polysaccharides chitosan and heparin, PEMs were constructed on gold-coated glass chips, tissue-culture polystyrene (TCPS), and titanium. PEM construction and basic fibroblast growth factor (FGF-2) adsorption to PEMs were evaluated by Fourier transform surface plasmon resonance, X-ray photoelectron spectroscopy, and polarization modulation infrared reflection absorption spectroscopy. The functional response of bone marrow-derived ovine MSCs to FGF-2 on PEM-coated TCPS and titanium was evaluated in vitro, in the presence and absence of adsorbed fibronectin. The effect of FGF-2 dose and presentation on MSC attachment and proliferation was evaluated using low-serum media, over four days. On PEM-coated TCPS, we found that FGF-2 adsorbed to heparin-terminated PEMs with adsorbed fibronectin induces greater cell density and a higher proliferation rate of MSCs than any of the other conditions tested, including delivery of the FGF-2 in solution, at an optimally mitogenic dose. Cell densities on day four were 1.8 times higher when FGF-2 was delivered by adsorption to the PEM than when FGF-2 was delivered in solution. This system represents a promising candidate for the development of surface coatings that can stabilize and potentiate the activity of growth factors for therapeutic applications. Interestingly, the same effects were not observed when FGF-2 was delivered by adsorption to PEMs on titanium. When the polysaccharide-based PEMs were formed on titanium, the proliferative response of ovine MSCs to adsorbed FGF-2 was not as strong as the response to FGF-2 delivered in solution.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos/química , Factor 2 de Crecimiento de Fibroblastos , Heparina/química , Células Madre Mesenquimatosas/efectos de los fármacos , Polímeros/química , Ingeniería de Tejidos/métodos , Adsorción , Animales , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/farmacología , Vidrio/química , Oro/química , Concentración de Iones de Hidrógeno , Células Madre Mesenquimatosas/citología , Poliestirenos/química , Unión Proteica , Estabilidad Proteica , Ovinos , Soluciones , Propiedades de Superficie , Titanio/química
11.
J Orthop Res ; 38(9): 1996-2005, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32222117

RESUMEN

Human chondrocytes in expansion culture can become progenitor-like in their ability to proliferate extensively and secrete neocartilage in chondrogenic culture. Sheep are used as a large animal model for cartilage tissue engineering, although for testing progenitor-like chondrocytes it is important that ovine chondrocytes resemble human in the ability to adopt progenitor properties. Here, we investigate whether ovine chondrocytes can adopt progenitor properties as indicated by rapid proliferation in a colony-forming fashion, and high levels of neocartilage secretion in chondrogenic culture. In conditions known to promote expansion of mesenchymal stromal cells, ovine chondrocytes proliferated through approximately 12 population doublings in 10 days. Time-lapse imaging indicated rapid proliferation in a colony-forming pattern. Expanded ovine chondrocytes that were seeded into agarose and cultured in chondrogenic medium accumulated neocartilage over 2 weeks, to a greater extent than primary chondrocytes. These data confirm that ovine chondrocytes resemble human chondrocytes in their ability to acquire progenitor properties that are important for cartilage tissue engineering. Given the broad interest in using progenitor cells to heal connective tissues, next we compared proliferation and trilineage differentiation of ovine chondrocytes, meniscus cells, and tenocytes. Meniscus cells and tenocytes experienced more than 13 population doublings in 10 days. In chondrogenic culture, cartilage matrix accumulation, and gene expression were largely similar among the cell types. All cell types resisted osteogenesis, while expanded tenocytes and meniscal cells were capable of adipogenesis. While ovine connective tissue cells demonstrated limited lineage plasticity, these data support the potential to promote certain progenitor properties with expansion.


Asunto(s)
Técnicas de Cultivo de Célula , Condrocitos/fisiología , Condrogénesis , Adipogénesis , Animales , Femenino , Ovinos , Células Madre/fisiología , Tenocitos/fisiología , Ingeniería de Tejidos
12.
Cartilage ; 11(3): 364-373, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30056741

RESUMEN

OBJECTIVE: Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. DESIGN: MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. RESULTS: During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. CONCLUSIONS: These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.


Asunto(s)
Cartílago/citología , Condrogénesis/efectos de los fármacos , Medios de Cultivo/farmacología , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/fisiología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/fisiología , Células Madre Mesenquimatosas/fisiología , Ratas , Sefarosa , Suero , Ingeniería de Tejidos
13.
Stem Cells Dev ; 29(2): 110-118, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31744386

RESUMEN

Both bone marrow-derived mesenchymal stem cells (BMDMSCs) and extracorporeal shockwave (ESW) have shown promise for enhancing fracture repair. If exposure of BMDMSCs to ESW enhances osteogenic differentiation, these therapies may be combined in vivo or used as a method for preconditioning BMDMSCs. The objective of this study was to determine the effect of ESW on the osteogenic ability of equine BMDMSCs. We hypothesized that ESW would promote osteogenesis evidenced by increased gene expression, alkaline phosphatase (ALPL) expression, slide morphologic score, and protein expression. BMDMSCs were evaluated from six horses. BMDMSCs were culture expanded to passage 3, dissociated, then placed in conical tubes. Treatment cells ("shocked") were exposed to 500 pulses at 0.16 mJ/mm2 energy. Cells were then reseeded and grown in either growth medium or osteogenic medium. Cellular proliferation and trilineage potential were determined. Cellular morphology was scored and cells were harvested at 1, 3, 7, 14, and 21 days for rtPCR gene expression of osteogenic markers [osteonectin (ONT), osteocalcin (OCN), ALPL, collagen type 3 (COL3), and runt-related transcription factor 2 (RUNX2)]. Media supernatants were evaluated for secretion of BMP-2, VEGF, TGFß, and PGE2 and cellular lysates were evaluated for ALPL production. There was no difference between the proliferative ability of shocked cells versus unshocked cells in either growth medium or osteogenic medium. ALPL production was greater in shocked cells maintained in osteogenic medium versus unshocked cells in osteogenic medium at day 3 (P < 0.005). Independent of media type, ESW caused a decrease in VEGF and TGFß production at day 3. No significant increases in gene expression were identified by rtPCR. Exposure of BMDMSCs to ESW does not result in negative effects. An initial significant increase in ALPL was detected but no persistent osteogenic effect was observed with cell expansion.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Ondas de Choque de Alta Energía , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Células de la Médula Ósea/citología , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Células Cultivadas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Caballos , Células Madre Mesenquimatosas/citología , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
J Orthop Res ; 38(12): 2539-2550, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32589800

RESUMEN

Platelet-rich plasma is autologous plasma that contains concentrated platelets compared to whole blood. It is relatively inexpensive to produce, can be easily isolated from whole blood, and can be administered while the patient is in the operating room. Further, because platelet-rich plasma is an autologous therapy, there is minimal risk for adverse reactions to the patient. Platelet-rich plasma has been used to promote bone regeneration due to its abundance of concentrated growth factors that are essential to wound healing. In this review, we summarize the methods for producing platelet-rich plasma and the history of its use in bone regeneration. We also summarize the growth factor profiles derived from platelet-rich plasma, with emphasis on those factors that play a direct role in promoting bone repair within the local fracture environment. In addition, we discuss the potential advantages of combining platelet-rich plasma with mesenchymal stem cells, a multipotent cell type often obtained from bone marrow or fat, to improve craniofacial and long bone regeneration. We detail what is currently known about how platelet-rich plasma influences mesenchymal stem cells in vitro, and then highlight the clinical outcomes of administering platelet-rich plasma and mesenchymal stem cells as a combination therapy to promote bone regeneration in vivo.


Asunto(s)
Regeneración Ósea , Ortopedia/tendencias , Plasma Rico en Plaquetas , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología
15.
Cell Mol Bioeng ; 12(2): 153-163, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31719906

RESUMEN

INTRODUCTION: Mesenchymal stem cell (MSC) chondrogenesis is associated with increases in intracellular reactive oxygen species (ROS), which may result in oxidative stress that is detrimental to cartilage regeneration. This study evaluated the ability of the antioxidants N-acetylcysteine (NAC) or pyrrolidine dithiocarbamate (PDTC) to reduce intracellular ROS, and their effect on MSC chondrogenesis and maturation of cartilage-like extracellular matrix. METHODS: Equine bone marrow MSCs were cultured in serum-supplemented chondrogenic medium with or without NAC or PDTC. ROS was quantified in monolayer after 8 and 72 h of culture. MSCs were seeded into agarose, cultured for 15 days, and analyzed for viable cell density, glycosaminoglycan (GAG) and hydroxyproline accumulation, and collagen gene expression. PDTC cultures were evaluated for oxidative damage by protein carbonylation, and mechanical properties via compressive testing. RESULTS: NAC significantly lowered levels of ROS after 8 but not 72 h, and suppressed GAG accumulation (70%). In secondary experiments using serum-free medium, NAC significantly increased levels of ROS at 72 h, and lowered cell viability and extracellular matrix accumulation. PDTC significantly reduced levels of ROS (~ 30%) and protein carbonylation (27%), and enhanced GAG accumulation (20%). However, the compressive modulus for PDTC-treated samples was significantly lower (40%) than controls. Gene expression was largely unaffected by the antioxidants. CONCLUSIONS: NAC demonstrated a limited ability to reduce intracellular ROS in chondrogenic culture, and generally suppressed accumulation of extracellular matrix. Conversely, PDTC was an effective antioxidant that enhanced GAG accumulation, although the concomitant reduction in compressive properties is a significant limitation for cartilage repair.

16.
J Orthop Res ; 37(6): 1368-1375, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30095195

RESUMEN

Ex vivo induction of chondrogenesis is a promising approach to improve upon the use of bone marrow mesenchymal stem cells (MSCs) for cartilage tissue engineering. This study evaluated the potential to induce chondrogenesis with days of culture in chondrogenic medium for MSCs encapsulated in self-assembling peptide hydrogel. To simulate the transition from preconditioning culture to implantation, MSCs were isolated from self-assembling peptide hydrogel into an individual cell suspension. Commitment to chondrogenesis was evaluated by seeding preconditioned MSCs into agarose and culturing in the absence of the chondrogenic cytokine transforming growth factor beta (TGFß). Positive controls consisted of undifferentiated MSCs seeded into agarose and cultured in medium containing TGFß. Three days of preconditioning was sufficient to produce chondrogenic MSCs that accumulated ∼75% more cartilaginous extracellular matrix than positive controls by day 17. However, gene expression of type X collagen was ∼65-fold higher than positive controls, which was attributed to the absence of TGFß. Potential induction of immunogenicity with preconditioning culture was indicated by expression of major histocompatibility complex class II (MHCII), which was nearly absence in undifferentiated MSCs, and ∼7% positive for preconditioned cells. These data demonstrate the potential to generate chondrogenic MSCs with days of self-assembling peptide hydrogel, and the ability to readily recover an individual cell suspension that is suited for injectable therapies. However, continued exposure to TGFß may be necessary to prevent hypertrophy indicated by type X collagen expression, while immunogenicity may be a concern for allogeneic applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1368-1375, 2019.


Asunto(s)
Condrogénesis/fisiología , Células Madre Mesenquimatosas/fisiología , Péptidos/farmacología , Ingeniería de Tejidos/métodos , Animales , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula , Colágeno Tipo II/análisis , Caballos , Hidrogeles , Células Madre Mesenquimatosas/citología , Antígenos Thy-1/análisis , Factores de Tiempo , Factor de Crecimiento Transformador beta/farmacología
17.
J Orthop Res ; 36(1): 506-514, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28548680

RESUMEN

Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.


Asunto(s)
Condrogénesis , Colágeno/metabolismo , Células Madre Mesenquimatosas/citología , Especies Reactivas de Oxígeno/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Medios de Cultivo , Matriz Extracelular/metabolismo , Glutatión/análisis , Caballos , Carbonilación Proteica , Sefarosa
18.
Cartilage ; 7(1): 92-103, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26958321

RESUMEN

OBJECTIVE: Dexamethasone is known to support mesenchymal stem cell (MSC) chondrogenesis, although the effects of dose and timing of exposure are not well understood. The objective of this study was to investigate these variables using a laboratory model of MSC chondrogenesis. DESIGN: Equine MSCs were encapsulated in agarose and cultured in chondrogenic medium with 1 or 100 nM dexamethasone, or without dexamethasone, for 15 days. Samples were analyzed for extracellular matrix (ECM) accumulation, prostaglandin E2 and alkaline phosphatase secretion, and gene expression of selected collagens and catabolic enzymes. Timing of exposure was evaluated by ECM accumulation after dexamethasone was withdrawn over the first 6 days, or withheld for up to 3 or 6 days of culture. RESULTS: ECM accumulation was not significantly different between 1 and 100 nM dexamethasone, but was suppressed ~40% in dexamethasone-free cultures. Prostaglandin E2 secretion, and expression of catabolic enzymes, including matrix metalloproteinase 13, and type X collagen was generally lowest in 100 nM dexamethasone and not significantly different between 1 nM and dexamethasone-free cultures. Dexamethasone could be withheld for at least 2 days without affecting ECM accumulation, while withdrawal studies suggested that dexamethasone supports ECM accumulation beyond day 6. CONCLUSION: One nanomolar dexamethasone supported robust cartilage-like ECM accumulation despite not having an effect on markers of inflammation, although higher concentrations of dexamethasone may be necessary to suppress undesirable hypertrophic differentiation. While early exposure to dexamethasone was not critical, sustained exposure of at least a week appears to be necessary to maximize ECM accumulation.

19.
Tissue Eng Part A ; 22(13-14): 917-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27268956

RESUMEN

Tissue engineering approaches using growth factor-functionalized acellular scaffolds to support and guide repair driven by endogenous cells are thought to require a careful balance between cell recruitment and growth factor release kinetics. The objective of this study was to identify a growth factor combination that accelerates progenitor cell migration into self-assembling peptide hydrogels in the context of cartilage defect repair. A novel 3D gel-to-gel migration assay enabled quantification of the chemotactic impact of platelet-derived growth factor-BB (PDGF-BB), heparin-binding insulin-like growth factor-1 (HB-IGF-1), and transforming growth factor-ß1 (TGF-ß1) on progenitor cells derived from subchondral bovine trabecular bone (bone-marrow progenitor cells, BM-PCs) encapsulated in the peptide hydrogel [KLDL]3. Only the combination of PDGF-BB and TGF-ß1 stimulated significant migration of BM-PCs over a 4-day period, measured by confocal microscopy. Both PDGF-BB and TGF-ß1 were slowly released from the gel, as measured using their (125)I-labeled forms, and they remained significantly present in the gel at 4 days. In the context of augmenting microfracture surgery for cartilage repair, our strategy of delivering chemotactic and proanabolic growth factors in KLD may provide the necessary local stimulus to help increase defect cellularity, providing more cells to generate repair tissue.


Asunto(s)
Células de la Médula Ósea/metabolismo , Movimiento Celular/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteínas Proto-Oncogénicas c-sis/farmacología , Células Madre/metabolismo , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1/farmacología , Animales , Becaplermina , Células de la Médula Ósea/citología , Bovinos , Células Madre/citología
20.
J Bone Joint Surg Am ; 98(1): 23-34, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26738900

RESUMEN

BACKGROUND: The chondrogenic potential of culture-expanded bone-marrow-derived mesenchymal stem cells (BMDMSCs) is well described. Numerous studies have also shown enhanced repair when BMDMSCs, scaffolds, and growth factors are placed into chondral defects. Platelets provide a rich milieu of growth factors and, along with fibrin, are readily available for clinical use. The objective of this study was to determine if the addition of BMDMSCs to an autologous platelet-enriched fibrin (APEF) scaffold enhances chondral repair compared with APEF alone. METHODS: A 15-mm-diameter full-thickness chondral defect was created on the lateral trochlear ridge of both stifle joints of twelve adult horses. In each animal, one defect was randomly assigned to receive APEF+BMDMSCs and the contralateral defect received APEF alone. Repair tissues were evaluated one year later with arthroscopy, histological examination, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and biomechanical testing. RESULTS: The arthroscopic findings, MRI T2 map, histological scores, structural stiffness, and material stiffness were similar (p > 0.05) between the APEF and APEF+BMDMSC-treated repairs at one year. Ectopic bone was observed within the repair tissue in four of twelve APEF+BMDMSC-treated defects. Defects repaired with APEF alone had less trabecular bone edema (as seen on MRI) compared with defects repaired with APEF+BMDMSCs. Micro-CT analysis showed thinner repair tissue in defects repaired with APEF+BMDMSCs than in those treated with APEF alone (p < 0.05). CONCLUSIONS: APEF alone resulted in thicker repair tissue than was seen with APEF+BMDMSCs. The addition of BMDMSCs to APEF did not enhance cartilage repair and stimulated bone formation in some cartilage defects. CLINICAL RELEVANCE: APEF supported repair of critical-size full-thickness chondral defects in horses, which was not improved by the addition of BMDMSCs. This work supports further investigation to determine whether APEF enhances cartilage repair in humans.


Asunto(s)
Enfermedades de los Cartílagos/cirugía , Cartílago Articular/cirugía , Fibrina/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Artroscopía/métodos , Biopsia con Aguja , Plaquetas , Enfermedades de los Cartílagos/patología , Cartílago Articular/patología , Modelos Animales de Enfermedad , Fibrina/administración & dosificación , Estudios de Seguimiento , Caballos , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética/métodos , Distribución Aleatoria , Ingeniería de Tejidos/métodos , Andamios del Tejido , Trasplante Autólogo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA