Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070276

RESUMEN

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Asunto(s)
Osteonectina , Ligamento Periodontal , Animales , Ratones , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Ratones Noqueados , Osteonectina/genética , Osteonectina/metabolismo
2.
Biochem Biophys Res Commun ; 624: 16-22, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932574

RESUMEN

Rab GTPases, the largest group of small monomeric GTPases, have been shown to participate in membrane trafficking involving many cellular processes. However, their roles during osteoblastic differentiation remain to be elucidated. In this study, we investigated Rab GTPase involvement in osteoblastic differentiation. Protein levels of a series of Rabs (Rab4, Rab5, Rab7, Rab9a, Rab11a/b, and Rab27) were increased during osteoblastic differentiation of MC3T3-E1 cells, and the Rab11a/b levels were particularly pronounced in the presence of Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, an activator of osteoblastogenesis. We subsequently investigated the functional contribution of Rab11a and Rab11b during osteoblastic differentiation. The alkaline phosphatase (ALP) levels were reduced by Rab11b depletion but not by Rab11a depletion. Because our result suggested that Rab11a and Rab11b could be regulated downstream of Runx2 (Runt-related transcription factor 2), a key transcription factor for osteoblastic differentiation, we investigated the effects of the double knockdown of Runx2 and Rab11a or Rab11b on osteoblastic phenotypes. The double knockdown significantly reduced ALP activity as well as collagen deposition compared with single Runx2 knockdown. Furthermore, the Rab11a and Rab11b response to mechanical stress in vivo was investigated using a mouse orthodontic tooth movement model. Rab11a and Rab11b expression was enhanced in the periodontal ligament, where bone formation is activated by tensile stress. This study shows that Rab11a and Rab11b are regulated downstream of Runx2 in osteoblastic differentiation, and their expressions are also controlled by tensile stress.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteínas de Unión al GTP rab , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Osteoblastos/metabolismo , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
3.
PLoS Genet ; 14(5): e1007340, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29718910

RESUMEN

Craniofacial abnormalities, including facial skeletal defects, comprise approximately one-third of all birth defects in humans. Since most bones in the face derive from cranial neural crest cells (CNCCs), which are multipotent stem cells, craniofacial bone disorders are largely attributed to defects in CNCCs. However, it remains unclear how the niche of CNCCs is coordinated by multiple gene regulatory networks essential for craniofacial bone development. Here we report that tumor suppressors breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) are required for craniofacial bone development in mice. Disruption of Brca1 in CNCC-derived mesenchymal cells, but not in epithelial-derived cells, resulted in craniofacial skeletal defects. Whereas osteogenic differentiation was normal, both osteogenic proliferation and survival were severely attenuated in Brca1 mutants. Brca1-deficient craniofacial skeletogenic precursors displayed increased DNA damage and enhanced cell apoptosis. Importantly, the craniofacial skeletal defects were sufficiently rescued by superimposing p53 null alleles in a neural crest-specific manner in vivo, indicating that BRCA1 deficiency induced DNA damage, cell apoptosis, and that the pathogenesis of craniofacial bone defects can be compensated by inactivation of p53. Mice lacking Brca2 in CNCCs, but not in epithelial-derived cells, also displayed abnormalities resembling the craniofacial skeletal malformations observed in Brca1 mutants. Our data shed light on the importance of BRCA1/BRCA2 function in CNCCs during craniofacial skeletal formation.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/metabolismo , Osteogénesis/genética , Animales , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proliferación Celular/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Daño del ADN , Reparación del ADN/genética , Células Madre Mesenquimatosas/metabolismo , Ratones Noqueados , Ratones Transgénicos , Cresta Neural/citología , Cráneo/embriología , Cráneo/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(19): E2589-97, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27118846

RESUMEN

The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development.


Asunto(s)
Desarrollo Óseo/fisiología , Anomalías Craneofaciales/fisiopatología , Huesos Faciales/fisiología , Flagelos/fisiología , Cresta Neural/fisiología , Cráneo/fisiología , Animales , Transporte Biológico Activo/fisiología , Proteínas Portadoras , Células Cultivadas , Anomalías Craneofaciales/patología , Huesos Faciales/citología , Flagelos/patología , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Modelos Biológicos , Morfogénesis/fisiología , Osteoblastos/fisiología , Osteoblastos/ultraestructura , Cráneo/citología
5.
J Histochem Cytochem ; 72(2): 109-120, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288702

RESUMEN

The cementum is a highly mineralized tissue that covers the tooth root. The regional differences among the types of cementum, especially in the extrinsic fibers that contribute to tooth support, remain controversial. Therefore, this study used second harmonic generation imaging in conjunction with automated collagen extraction and image analysis algorithms to facilitate the quantitative examination of the fiber characteristics and the changes occurring in these fibers over time. Acellular extrinsic fiber cementum (AEFC) was invariably observed in the superficial layer of the apical cementum in mouse molars, indicating that this region of the cementum plays a crucial role in supporting the tooth. The apical AEFC exhibited continuity and fiber characteristics comparable with the cervical AEFC, suggesting a common cellular origin for their formation. The cellular intrinsic fiber cementum present in the inner layer of the apical cementum showed consistent growth in the apical direction without layering. This study highlights the dynamic nature of the cementum in mouse molars and underscores the requirement for re-examining its structure and roles. The findings of the present study elucidate the morphophysiological features of cementum and have broader implications for the maintenance of periodontal tissue health.


Asunto(s)
Colágeno , Cemento Dental , Ratones , Animales , Cemento Dental/química , Colágeno/análisis , Raíz del Diente/química , Diente Molar , Procesamiento de Imagen Asistido por Computador , Ligamento Periodontal/química
6.
Sci Rep ; 14(1): 354, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172274

RESUMEN

A comprehensive understanding of the extracellular matrix (ECM) is essential for developing biomimetic ECM scaffolds for tissue regeneration. As the periodontal ligament cell (PDLC)-derived ECM has shown potential for periodontal tissue regeneration, it is vital to gain a deeper understanding of its comprehensive profile. Although the PDLC-derived ECM exhibits extracellular environment similar to that of periodontal ligament (PDL) tissue, details of its molecular composition are lacking. Thus, using a multiomics approach, we systematically analyzed cultured mouse PDLC-derived ECM and compared it to mouse PDL tissue as a reference. Proteomic analysis revealed that, compared to PDL tissue, the cultured PDLC-derived ECM had a lower proportion of fibrillar collagens with increased levels of glycoprotein, corresponding to an immature ECM status. The gene expression signature was maintained in cultured PDLCs and was similar to that in cells from PDL tissues, with additional characteristics representative of naturally occurring progenitor cells. A combination of proteomic and transcriptomic analyses revealed that the cultured mouse PDLC-derived ECM has multiple advantages in tissue regeneration, providing an extracellular environment that closely mimics the environment in the native PDL tissue. These findings provide valuable insights for understanding PDLC-derived ECM and should contribute to the development of biomimetic ECM scaffolds for reliable periodontal tissue regeneration.


Asunto(s)
Multiómica , Ligamento Periodontal , Ratones , Animales , Ligamento Periodontal/metabolismo , Proteómica , Matriz Extracelular/metabolismo , Células Cultivadas
7.
Front Physiol ; 13: 899699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669581

RESUMEN

The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.

8.
Front Physiol ; 12: 649492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854442

RESUMEN

Cleft palate is one of the most common craniofacial birth defects, however, little is known about how changes in the DNA damage response (DDR) cause cleft palate. To determine the role of DDR during palatogenesis, the DDR process was altered using a pharmacological intervention approach. A compromised DDR caused by a poly (ADP-ribose) polymerase (PARP) enzyme inhibitor resulted in cleft palate in wild-type mouse embryos, with increased DNA damage and apoptosis. In addition, a mouse genetic approach was employed to disrupt breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2), known as key players in DDR. An ectomesenchymal-specific deletion of Brca1 or Brca2 resulted in cleft palate due to attenuation of cell survival. This was supported by the phenotypes of the ectomesenchymal-specific Brca1/Brca2 double-knockout mice. The cleft palate phenotype was rescued by superimposing p53 null alleles, demonstrating that the BRCA1/2-p53 DDR pathway is critical for palatogenesis. Our study highlights the importance of DDR in palatogenesis.

9.
Sci Rep ; 11(1): 9813, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963224

RESUMEN

Periodontal ligament (PDL) is a uniquely differentiated tissue that anchors the tooth to the alveolar bone socket and plays key roles in oral function. PDL cells can respond rapidly to mechanical stimuli, resulting in accelerated tissue remodeling. Cell proliferation is an initial event in tissue remodeling and participates in maintaining the cell supply; therefore, analyzing cell-proliferative activity might provide a comprehensive view of cellular dynamics at the tissue level. In this study, we investigated proliferating cells in mouse molar PDL during orthodontic tooth movement (OTM)-induced tissue remodeling. Our results demonstrated that the mechanical stimuli evoked a dynamic change in the proliferative-cell profile at the entire PDL. Additionally, cell-tracing analysis revealed that the proliferated cells underwent further division and subsequently contributed to tissue remodeling. Moreover, OTM-induced proliferating cells expressed various molecular markers that most likely arise from a wide range of cell types, indicating the lineage plasticity of PDL cells in vivo. Although further studies are required, these findings partially elucidated the global views of the cell trajectory in mouse molar PDL under mechanical-loading conditions, which is vital for understanding the cellular dynamics of the PDL and beneficial for dental treatment in humans.


Asunto(s)
Remodelación Ósea , Proliferación Celular , Diente Molar/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Estrés Mecánico , Técnicas de Movimiento Dental , Animales , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA