Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutr Clin Pract ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073166

RESUMEN

Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data-rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.

2.
medRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148835

RESUMEN

Purpose: Intravenous fluids are mainstay of management of acute kidney injury (AKI) after sepsis but can cause fluid overload. Recent literature shows that restrictive fluid strategy may be beneficial in some patients with AKI, however, identifying these patients is challenging. We aimed to develop and validate a machine learning algorithm to identify patients who would benefit from a restrictive fluid strategy. Methods: We included patients with sepsis who developed AKI within 48 hours of ICU admission and defined restrictive fluid strategy as receiving <500mL fluids within 24 hours after AKI. Our primary outcome was early AKI reversal within 48 hours of AKI onset, and secondary outcomes included sustained AKI reversal and major adverse kidney events (MAKE) at discharge. We used a causal forest, a machine learning algorithm to estimate individual treatment effects and policy tree algorithm to identify patients who would benefit by restrictive fluid strategy. We developed the algorithm in MIMIC-IV and validated it in eICU database. Results: Among 2,091 patients in the external validation cohort, policy tree recommended restrictive fluids for 88.2%. Among these, patients who received restrictive fluids demonstrated significantly higher rate of early AKI reversal (48.2% vs 39.6%, p<0.001), sustained AKI reversal (36.7% vs 27.4%, p<0.001) and lower rates of MAKE by discharge (29.3% vs 35.1%, p=0.019). These results were consistent in adjusted analysis. Conclusion: Policy tree based on causal machine learning can identify septic patients with AKI who benefit from a restrictive fluid strategy. This approach needs to be validated in prospective trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA