Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 139(6): 1109-18, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005804

RESUMEN

Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Conformación Proteica , Bacterias/química , Bacterias/metabolismo , Enlace de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Termodinámica
2.
Biophys J ; 99(2): 619-28, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20643082

RESUMEN

Capsids of many viruses assemble around nucleic acids or other polymers. Understanding how the properties of the packaged polymer affect the assembly process could promote biomedical efforts to prevent viral assembly or nanomaterials applications that exploit assembly. To this end, we simulate on a lattice the dynamical assembly of closed, hollow shells composed of several hundred to 1000 subunits, around a flexible polymer. We find that assembly is most efficient at an optimum polymer length that scales with the surface area of the capsid; polymers that are significantly longer than optimal often lead to partial-capsids with unpackaged polymer "tails" or a competition between multiple partial-capsids attached to a single polymer. These predictions can be tested with bulk experiments in which capsid proteins assemble around homopolymeric RNA or synthetic polyelectrolytes. We also find that the polymer can increase the net rate of subunit accretion to a growing capsid both by stabilizing the addition of new subunits and by enhancing the incoming flux of subunits; the effects of these processes may be distinguishable with experiments that monitor the assembly of individual capsids.


Asunto(s)
Cápside/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Ensamble de Virus , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Simulación por Computador , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
J Biol Chem ; 282(11): 8099-109, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17158866

RESUMEN

PDZ domains are ubiquitous peptide-binding modules that mediate protein-protein interactions in a wide variety of intracellular trafficking and localization processes. These include the pathways that regulate the membrane trafficking and endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel mutated in patients with cystic fibrosis. Correspondingly, a number of PDZ proteins have now been identified that directly or indirectly interact with the C terminus of CFTR. One of these is CAL, whose overexpression in heterologous cells directs the lysosomal degradation of WT-CFTR in a dose-dependent fashion and reduces the amount of CFTR found at the cell surface. Here, we show that RNA interference targeting endogenous CAL specifically increases cell-surface expression of the disease-associated DeltaF508-CFTR mutant and thus enhances transepithelial chloride currents in a polarized human patient bronchial epithelial cell line. We have reconstituted the CAL-CFTR interaction in vitro from purified components, demonstrating for the first time that the binding is direct and allowing us to characterize its components biochemically and biophysically. To test the hypothesis that inhibition of the binding site could also reverse CAL-mediated suppression of CFTR, a three-dimensional homology model of the CAL.CFTR complex was constructed and used to generate a CAL mutant whose binding pocket is correctly folded but has lost its ability to bind CFTR. Although produced at the same levels as wild-type protein, the mutant does not affect CFTR expression levels. Taken together, our data establish CAL as a candidate therapeutic target for correction of post-maturational trafficking defects in cystic fibrosis.


Asunto(s)
Proteínas Portadoras/fisiología , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteínas de la Membrana/fisiología , Mutagénesis , Interferencia de ARN , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Células COS , Proteínas Portadoras/biosíntesis , Chlorocebus aethiops , Células Epiteliales/metabolismo , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de Transporte de Membrana , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Homología de Secuencia de Aminoácido , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA