RESUMEN
BACKGROUND: Influenza disease burden varies by age and this has important public health implications. We compared the proportional distribution of different influenza virus types within age strata using surveillance data from twenty-nine countries during 1999-2014 (N=358,796 influenza cases). METHODS: For each virus, we calculated a Relative Illness Ratio (defined as the ratio of the percentage of cases in an age group to the percentage of the country population in the same age group) for young children (0-4 years), older children (5-17 years), young adults (18-39 years), older adults (40-64 years), and the elderly (65+ years). We used random-effects meta-analysis models to obtain summary relative illness ratios (sRIRs), and conducted meta-regression and sub-group analyses to explore causes of between-estimates heterogeneity. RESULTS: The influenza virus with highest sRIR was A(H1N1) for young children, B for older children, A(H1N1)pdm2009 for adults, and (A(H3N2) for the elderly. As expected, considering the diverse nature of the national surveillance datasets included in our analysis, between-estimates heterogeneity was high (I2>90%) for most sRIRs. The variations of countries' geographic, demographic and economic characteristics and the proportion of outpatients among reported influenza cases explained only part of the heterogeneity, suggesting that multiple factors were at play. CONCLUSIONS: These results highlight the importance of presenting burden of disease estimates by age group and virus (sub)type.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Preescolar , Bases de Datos Factuales , Femenino , Salud Global , Humanos , Lactante , Recién Nacido , Gripe Humana/diagnóstico , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
INTRODUCTION: Determining the optimal time to vaccinate is important for influenza vaccination programmes. Here, we assessed the temporal characteristics of influenza epidemics in the Northern and Southern hemispheres and in the tropics, and discuss their implications for vaccination programmes. METHODS: This was a retrospective analysis of surveillance data between 2000 and 2014 from the Global Influenza B Study database. The seasonal peak of influenza was defined as the week with the most reported cases (overall, A, and B) in the season. The duration of seasonal activity was assessed using the maximum proportion of influenza cases during three consecutive months and the minimum number of months with ≥80% of cases in the season. We also assessed whether co-circulation of A and B virus types affected the duration of influenza epidemics. RESULTS: 212 influenza seasons and 571,907 cases were included from 30 countries. In tropical countries, the seasonal influenza activity lasted longer and the peaks of influenza A and B coincided less frequently than in temperate countries. Temporal characteristics of influenza epidemics were heterogeneous in the tropics, with distinct seasonal epidemics observed only in some countries. Seasons with co-circulation of influenza A and B were longer than influenza A seasons, especially in the tropics. DISCUSSION: Our findings show that influenza seasonality is less well defined in the tropics than in temperate regions. This has important implications for vaccination programmes in these countries. High-quality influenza surveillance systems are needed in the tropics to enable decisions about when to vaccinate.