RESUMEN
MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed.