Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 127(41): 8623-8632, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37802497

RESUMEN

Autoxidation has been acknowledged as a major oxidation pathway in a broad range of atmospherically important compounds including isoprene and monoterpenes. More recently, autoxidation has also been identified as central and even dominant in the atmospheric oxidation of the rather small nonhydrocarbons dimethyl sulfide (DMS) and trimethylamine (TMA). Here, we find even faster autoxidation in the aliphatic amine triethylamine (TEA). The atmospherically dominating autoxidation leads to highly oxygenated and functionalized compounds. Products with as many as three hydroperoxy (OOH) groups and an O:C ratio larger than 1 are formed. We present theoretical multiconformer transition-state theory (MC-TST) calculations of the unimolecular reactions in the autoxidation following the OH + TEA reaction and calculate peroxy radical H-shift rate coefficients >20 s-1 for the first two generations of H-shifts. The efficient autoxidation in TEA is verified by the observation of the proposed highly oxidized products and radicals in flow-tube experiments. We find that the initial OH hydrogen abstraction at the α-carbon is strongly favored, with the ß-carbon abstraction yield being less than a few percent.

2.
J Phys Chem A ; 127(44): 9311-9321, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37877667

RESUMEN

Recently, hydroperoxy amides were identified as major products of OH-initiated autoxidation of tertiary amines in the atmosphere. The formation mechanism is analogous to that found for ethers and sulfides but substantially faster. However, the atmospheric fate of the hydroperoxy amides remains unknown. Using high-level theoretical methods, we study the most likely OH-initiated oxidation pathways of the hydroperoxy and dihydroperoxy amides derived from trimethylamine autoxidation. Overall, we find that the OH-initiated oxidation of the hydroperoxy amides predominantly leads to the formation of imides under NO-dominated conditions and more highly oxidized hydroperoxy amides under HO2-dominated conditions. Unimolecular reactions are found to be surprisingly slow, likely due to the restricting, planar structure of the amide moiety.

3.
J Phys Chem A ; 125(50): 10640-10648, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34904843

RESUMEN

Fourier transform infrared spectroscopy has been used to follow the reaction of CH3OCF2CHF2 with either Cl or OH radicals within a photoreactor. Rate constants of k(OH + CH3OCF2CHF2) = (2.25 ± 0.60) × 10-14 cm3 molecule-1 s-1 and k(Cl + CH3OCF2CHF2) = (2.50 ± 0.39) × 10-13 cm3 molecule-1 s-1 were determined at 296 ± 2 K. Theoretical and experimental investigation of the Cl + CH3OCF2CHF2 reaction identified the formation of two main products, HC(O)OCF2CHF2 and COF2. Chlorine (and OH) radicals react with CH3OCF2CHF2 by H-abstraction from either the -CH3 or -CHF2 site. Abstraction from the -CH3 site was determined to constitute at least 60%, as determined from the formation of the primary product, HC(O)OCF2CHF2, which can only form from this abstraction site. At longer reaction times, HC(O)OCF2CHF2 further reacts and the yield of COF2 approaches two, the maximum possible with the number of F atoms in the reactant. The atmospheric lifetime of CH3OCF2CHF2 with OH radicals was determined to be 1.4 years. The global warming potentials over 20-, 100-, and 500-year time horizons were estimated to be 325, 88, and 25, respectively.

5.
J Chromatogr A ; 1717: 464622, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38309189

RESUMEN

Microplastic is ubiquitous in the environment. Recently it was discovered that microplastic (MP, 1 µm-5 mm) contamination is present in the atmosphere where it can be transported over long distances and introduced to remote pristine environments. Sources, concentration levels, and transportation pathways of MP are still associated with large uncertainties. The abundance of atmospheric MP increases with decreasing particle size, suggesting that nanoplastics (NP, <1µm) could be of considerable atmospheric relevance. Only few analytical methods are available for detection of nanosized plastic particles. Thermoanalytical techniques are independent of particle size and are thus a powerful tool for MP and NP analysis. Here we develop a method for analysis of polystyrene on the nanogram scale using pyrolysis gas chromatography coupled to mass spectrometry. Pyrolysis was performed using a slow temperature ramp, and analytes were cryofocused prior to injection. The mass spectrometer was operated in selected ion monitoring (SIM) mode. A lower limit of detection of 1±1 ng and a lower limit of quantification of 2±2 ng were obtained (for the trimer peak). The method was validated with urban matrices of low (7 µg per sample) and high (53 µg per sample) aerosol mass loadings. The method performs well for low loadings, whereas high loadings seem to cause a matrix effect reducing the signal of polystyrene. This effect can be minimized by introducing a thermal desorption step prior to pyrolysis. The study provides a novel analysis method for qualitative and semi-quantitative analysis of PS on the nanogram scale in an aerosol matrix. Application of the method can be used to obtain concentration levels of polystyrene in atmospheric MP and NP. This is important in order to improve the understanding of the sources and sinks of MP and NP in the environment and thereby identify routes of exposure and uptake of this emerging contaminant.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Poliestirenos/análisis , Plásticos/química , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Pirólisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Nanopartículas/química , Aerosoles/análisis
6.
HardwareX ; 16: e00491, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38034102

RESUMEN

Aerosol particles with rare specific properties act as nuclei for ice formation. The presence of ice nucleating particles in the atmosphere leads to heterogeneous freezing at warm temperatures and thus these particles play an important role in modulating microphysical properties of clouds. This work presents an ice nucleation cold stage instrument for measuring the concentration of ice nucleating particles in liquids. The cost is âˆ¼ $10 k including an external chiller. Using a lower cost heat sink reduces the cost to âˆ¼ $6 k. The instrument is suitable for studying ambient ice nucleating particle concentrations and laboratory-based process-level studies of ice nucleation. The design plans allow individuals to self-manufacture the cold-stage using 3D printing, off-the-shelf parts, and a handful of standard tools. Software to operate the instrument and analyze the data is also provided. The design is intended to be simple enough that a graduate student can build it as part of a course or thesis project. Costs are kept to a minimum to facilitate use in classroom demonstrations and laboratory classes.

7.
Science ; 376(6596): 979-982, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617402

RESUMEN

Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA