Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Cell Fact ; 17(1): 189, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486842

RESUMEN

BACKGROUND: In Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures. RESULTS: Shake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF. CONCLUSION: Although the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process.


Asunto(s)
Reactores Biológicos/microbiología , Oxígeno/farmacología , Recombinación Genética/genética , Streptomyces lividans/metabolismo , Cinética , Redes y Vías Metabólicas/efectos de los fármacos , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Prodigiosina/química , Espectroscopía Infrarroja por Transformada de Fourier , Streptomyces lividans/efectos de los fármacos , Streptomyces lividans/crecimiento & desarrollo
2.
Biotechnol Bioeng ; 112(2): 308-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25117428

RESUMEN

Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Reactores Biológicos , Células Vegetales/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/genética , Línea Celular , Humanos , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Nicotiana
3.
Adv Biochem Eng Biotechnol ; 138: 45-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23604207

RESUMEN

: Orbitally shaken single-use reactors are promising reactors for upstream processing, because they fulfill three general requirements for single-use equipment. First, the design of the disposable parts is inherently simple and cost-efficient, because no complex built-in elements such as baffles or rotating stirrers are required. Second, the liquid distribution induced by orbital shaking is well-defined and accurately predictable. Third, the scale-up from small-scale systems, where shaken bioreactors are commonly applied, is simple and has been successfully proven up to the cubic meter scale. However, orbitally shaken single-use reactors are only suitable for certain applications such as cultivating animal or plant cells with low oxygen demand. Thus, detailed knowledge about the performance of such systems on different scales is essential to exploit their full potential. This article presents an overview about opportunities and limitations of shaken single-use reactors.


Asunto(s)
Reactores Biológicos , Células Vegetales , Animales , Oxígeno
4.
Biotechnol Prog ; 30(6): 1441-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25138595

RESUMEN

Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well-defined liquid distribution together with a simple and cost-efficient design. Cultivation conditions in the surface-aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P∕VL ) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)-commonly applied to simulate the liquid distribution in such bioreactors-needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P∕VL for liquids with water-like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P∕VL , CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Modelos Teóricos , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Células Cultivadas , Oxígeno/análisis , Reología
5.
J Biol Eng ; 7(1): 28, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24289110

RESUMEN

BACKGROUND: Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. RESULTS: A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. CONCLUSION: The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

6.
Trends Biotechnol ; 30(6): 307-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22520242

RESUMEN

Shaking bioreactors are the most frequently used reactor system for screening and process optimization on a small scale. Their success can be attributed to their simple and functional design, which make shaking systems suitable for a large number of cost-efficient parallel experiments. Recently reported findings for oxygen transfer, power input, out-of-phase operation, hydromechanical stress and mixing in shaken bioreactors are summarized in this article. Novel monitoring techniques for the control of culture conditions in shake flasks and microtiter plates are described. The methods for characterizing culture conditions and the novel online measurement techniques that are summarized in this article can be utilized to tap the full potential of shaking reactor systems.


Asunto(s)
Reactores Biológicos , Biotecnología , Técnicas de Cultivo de Célula , Animales , Células Cultivadas , Insectos , Mamíferos , Oxígeno , Células Vegetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA