Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 143(4): 691-702, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26755703

RESUMEN

Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesencephalon and caudal diencephalon of all tetrapod species studied so far. They are the most prominent DA neuronal population and are implicated in control and modulation of motor, cognitive and rewarding/affective behaviors. Their degeneration or dysfunction is intimately linked to several neurological and neuropsychiatric human diseases. To gain further insights into their generation, we studied spatiotemporal expression patterns and epistatic interactions in chick embryos of selected marker genes and signaling pathways associated with mdDA neuron development in mouse. We detected striking differences in the expression patterns of the chick orthologs of the mouse mdDA marker genes Pitx3 and Aldh1a1, which suggests important differences between the species in the generation/generating of these cells. We also discovered that the sonic hedgehog signaling pathway is both necessary and sufficient for the induction of ectopic PITX3 expression in chick mesencephalon downstream of WNT9A-induced LMX1a transcription. These aspects of early chicken development resemble the ontogeny of zebrafish diencephalic DA neuronal populations, and suggest a divergence between birds and mammals during evolution.


Asunto(s)
Pollos/genética , Diencéfalo/citología , Neuronas Dopaminérgicas/citología , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Mesencéfalo/citología , Factores de Transcripción/genética , Animales , Biomarcadores/metabolismo , Proliferación Celular , Embrión de Pollo , Diencéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Mesencéfalo/metabolismo , Ratones , Mitosis , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transducción de Señal/genética , Análisis Espacio-Temporal , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
2.
BMC Dev Biol ; 18(1): 3, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29471810

RESUMEN

BACKGROUND: MiR-9 is a small non-coding RNA that is highly conserved between species and primarily expressed in the central nervous system (CNS). It is known to influence proliferation and neuronal differentiation in the brain and spinal cord of different vertebrates. Different studies have pointed to regional and species-specific differences in the response of neural progenitors to miR-9. METHODS: In ovo and ex ovo electroporation was used to overexpress or reduce miR-9 followed by mRNA in situ hybridisation and immunofluorescent stainings to evaluate miR- expression and the effect of changed miR-9 expression. RESULTS: We have investigated the expression and function of miR-9 during early development of the mid-hindbrain region (MH) in chick. Our analysis reveals a closer relationship of chick miR-9 to mammalian miR-9 than to fish and a dynamic expression pattern in the chick neural tube. Early in development, miR-9 is diffusely expressed in the entire brain, bar the forebrain, and it becomes more restricted to specific areas of the CNS at later stages. MiR-9 overexpression at HH9-10 results in a reduction of FGF8 expression and premature neuronal differentiation in the mid-hindbrain boundary (MHB). Within the midbrain miR-9 does not cause premature neuronal differentiation it rather reduces proliferation in the midbrain. CONCLUSION: Our findings indicate that miR-9 has regional specific effects in the developing mid-hindbrain region with a divergence of response of regional progenitors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , División Celular/genética , Embrión de Pollo , Secuencia Conservada/genética , Regulación hacia Abajo/genética , Evolución Molecular , Mesencéfalo/citología , Mesencéfalo/embriología , Mesencéfalo/metabolismo , MicroARNs/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo , Neurogénesis/genética , Células Madre/citología , Células Madre/metabolismo
3.
Nat Neurosci ; 11(6): 641-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18454145

RESUMEN

The midbrain-hindbrain boundary (MHB) is a long-lasting organizing center in the vertebrate neural tube that is both necessary and sufficient for the ordered development of midbrain and anterior hindbrain (midbrain-hindbrain domain, MH). The MHB also coincides with a pool of progenitor cells that contributes neurons to the entire MH. Here we show that the organizing activity and progenitor state of the MHB are co-regulated by a single microRNA, miR-9, during late embryonic development in zebrafish. Endogenous miR-9 expression, initiated at late stages, selectively spares the MHB. Gain- and loss-of-function studies, in silico predictions and sensor assays in vivo demonstrate that miR-9 targets several components of the Fgf signaling pathway, thereby delimiting the organizing activity of the MHB. In addition, miR-9 promotes progression of neurogenesis in the MH, defining the MHB progenitor pool. Together, these findings highlight a previously unknown mechanism by which a single microRNA fine-tunes late MHB coherence via its co-regulation of patterning activities and neurogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Mesencéfalo/embriología , MicroARNs/fisiología , Organizadores Embrionarios/fisiología , Rombencéfalo/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , MicroARNs/farmacología , Proteínas del Tejido Nervioso/metabolismo , Análisis Numérico Asistido por Computador , Regiones Promotoras Genéticas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas de Pez Cebra/genética
4.
BMC Cell Biol ; 5: 12, 2004 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-15053843

RESUMEN

BACKGROUND: The autosomal dominant form of Emery-Dreifuss muscular dystrophy (AD-EDMD) is caused by mutations in the gene encoding for the lamins A and C (LMNA). Lamins are intermediate filament proteins which form the nuclear lamina underlying the inner nuclear membrane. We have studied the expression and the localization of nuclear envelope proteins in three different cell types and muscle tissue of an AD-EDMD patient carrying a point mutation R377H in the lamin A/C gene. RESULTS: Lymphoblastoid cells, skin fibroblasts, primary myoblasts and muscle thin sections were studied by immunocytochemistry and electron microscopy. Cellular levels of A-type lamins were reduced compared to control cells. In contrast, the amount of emerin and lamin B appeared unaltered. Cell synchronization experiments showed that the reduction of the cellular level of A-type lamin was due to instability of lamin A. By electron microscopy, we identified a proportion of nuclei with morphological alterations in lymphoblastoid cells, fibroblasts and mature muscle fibres. Immunofluorescence microscopy showed that a major population of the lamin B receptor (LBR), an inner nuclear membrane protein, was recovered in the cytoplasm in association with the ER. In addition, the intranuclear organization of the active form of RNA polymerase II was markedly different in cells of this AD-EDMD patient. This aberrant intranuclear distribution was specifically observed in muscle cells where the pathology of EDMD predominates. CONCLUSIONS: From our results we conclude: Firstly, that structural alterations of the nuclei which are found only in a minor fraction of lymphoblastoid cells and mature muscle fibres are not sufficient to explain the clinical pathology of EDMD; Secondly, that wild type lamin A is required not only for the retention of LBR in the inner nuclear membrane but also for a correct localization of the transcriptionally active RNA pol II in muscle cells. We speculate that a rearrangement of the internal chromatin could lead to muscle-specific disease symptoms by interference with proper mRNA transcription.


Asunto(s)
Lamina Tipo A/genética , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Mutación Puntual , Sustitución de Aminoácidos , Núcleo Celular/química , Núcleo Celular/ultraestructura , Cromatina/ultraestructura , Humanos , Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología , Mioblastos/química , Mioblastos/citología , Membrana Nuclear/ultraestructura , ARN Polimerasa II/análisis , Receptores Citoplasmáticos y Nucleares/análisis , Receptor de Lamina B
5.
Dev Dyn ; 233(3): 907-20, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15906380

RESUMEN

The chick midbrain is subdivided into functionally distinct ventral and dorsal domains, tegmentum and optic tectum. In the mature tectum, neurons are organized in layers, while they form discrete nuclei in the tegmentum. Dorsoventral (DV) specification of the early midbrain should thus play a crucial role for the organization of the neuronal circuitry in optic tectum and tegmentum. To investigate regional commitment and establishment of cellular differences along the midbrain DV axis, we examined the commitment of gene expression patterns in isolated ventral and dorsal tissue in vivo and in vitro, and studied their cell mixing properties. Use of explant cultures, and grafting of dorsal midbrain into a ventral environment or vice versa, revealed a gradual increase in the autonomy of region-specific gene regulation between stages 12 and 18 (embryonic day 2 to 3). This process becomes independent of the activity of midline organizers, such as floor and roof plate, by stage 16. Once the DV axis polarity is fixed, cells from dorsal and ventral midbrain adopt differential adhesive properties. Thus between stages 18 to 23 (embryonic day 3 and 4), cells of dorsal and ventral origin start to separate from each other, at a time-point when the majority of midbrain cells is not yet differentiated. Hence, our results suggest that progressive specification of the midbrain DV axis is accompanied by progressively reduced cell mixing between dorsal and ventral precursors, leading to a partial regionalization of midbrain tissue into autonomous units of precursor cell populations.


Asunto(s)
Tipificación del Cuerpo , Mesencéfalo/embriología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Trasplante de Tejido Encefálico , Adhesión Celular , Diferenciación Celular , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/citología , Mesencéfalo/metabolismo , Mesencéfalo/cirugía , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA